

1020

Frequency (Hz)

MAGIC observation and broadband characterization of the remarkably bright flares of 1ES 1959+650 in 2016

W. Bhattacharyya (DESY),

M. Takahashi* (ICRR) and

M. Hayashida (Rikkyo U.) on behalf of the MAGIC and Fermi-LAT collaboration

TeV BLAZAR 1ES 1959+650

- ♦ Well-known TeV blazar
- High-frequency-peaked BL Lac object (HBL)
- ightharpoonup Redshift z=0.048
- ✦ Features challenging for simple onezone SSC* scenario
 - "orphan" flares
 - γ-ray flare without X-ray counterpart
 - hint of high-energy neutrino emission with AMANDA [Halzen & Hooper 05]
 - although not significant

high-X/high-γ

[Krawczynski+ 04]

high-X/low-γ

[Tagliaferri+ 08]

Variety of flaring activities

[Aliu+ 04]

* SSC: synchrotron self-Compton

INSTRUMENTS

MAGIC

- System of two Imaging
 Atmospheric Cherenkov Telescopes
- Located at La Palma, Spain
 - 28°.7N, 2,200 m a.s.l.
- Mirror dish: D17 m
- Energy range: ≥50 GeV for low zenith angle

Fermi-LAT

- Onboard Fermi Gamma-ray Space Telescope
- Covering whole sky every 3 hr in standard survey mode
- Energy range:
 Tens of MeV—≥300 GeV

Swift

 Publicly available data of two instruments onboard Neil Gehrels Swift Observatory were used

XRT

Energy range:0.2-10 keV

UVOT

Waveband range:170-600 nm

FLARES in 2016

- ◆ Remarkably bright flares in VHE* γ rays were observed on 13th, 14th
 June and 1st July 2016
 - ▶ flux reached ~3 Crab Unit (C.U.)

- ♦ We focus on flares on 13th, 14th June
 - quasi-simultaneous data of MAGIC, Fermi-LAT and Swift-XRT/ UVOT

OBSERVATIONS and DATA ANALYSIS

- MAGIC Energy threshold: ~100 GeV
 - Spectra above ~100 GeV on both nights
 - Light curve with 10-min binning
- Fermi-LAT
- Survey mode
- Spectral fit with power-law for 0.3—300 GeV

- XRT
- UVOT
- Spectral fit with power-law and log-parabola for >0.5 KeV
- Waveband filters
 - 13th June: W1 and W2
 - 14th June: W1, M1 and W2
- Flux for each filter

OBSERVATIONS and DATA ANALYSIS

OBSERVATIONS and DATA ANALYSIS

for 0.3—300 GeV

VHE y-RAY SPECTRUM

- ◆ Deabsorbed† SEDs* are very flat and extend up to a few TeV
- ♦ SEDs peak at 0.4—0.7 TeV
- ◆ No decisive preference among fits by
 - log-parabola
 - power-law with exponential cutoff
 - log-parabola with exponential cutoff
- ◆ Local power-law index <2 around 300 GeV</p>
- ♦ Spectrum is harder on 13th than on 14th
- † Extragalactic-background-light absorption was corrected with [Franceschini+ 08]
- * SED: spectral energy distribution

HIGH-ENERGY y-RAY and X-RAY SPECTRUM

- Fermi-LAT
- ◆ Power-law fit yielded index of 1.56±0.20
 - ▶ for 0.3–300 GeV and single 1.5-day bin
 - ► cf. 1.82±0.01 (for 50 MeV—1 TeV;4FGL catalog)

- Log-parabola does not improve goodness of fit compared to power-law
- power-law index
 - ▶ 13th June: 1.81±0.01
 - ▶ 14th June: 1.82±0.01

FAST VARIABILITY in VHE y RAYS

- ♦ VHE flux exhibited fast variability on 13th
 June 2016
- ◆ Doubling time scale: 36 ± 14 min
 - based on steepest step in the VHE flux
 between two consecutive light curve bins
 [Zhang+ 99]
 - fitting substructure in light curves leads to similar results
 - during middle part
 - with exponential-like functions
- **◆** Emission region size ≤ 10¹⁵ cm for Doppler factor δ=20

$$F(t) = A_0/(e^{\frac{t_0-t}{t_r}} + e^{\frac{t-t_0}{t_f}})$$

$$F(t) = A_0 e^{-|t - t_0|/t_r}$$

$$t_{\text{rise}} = t_{\text{r}} \ln 2 = 22 \pm 12 \text{ min}$$
 $t_{\text{rise}} = t_{\text{r}} \ln 2 = 91 \pm 16 \text{ min}$

$$t_{\text{fall}} = t_{\text{f}} \ln 2 = 32 \pm 20 \text{ min}$$

LEPTONIC MODEL

- **♦** One-zone SSC model
 - ► Electron spectrum: broken power-law
 - difference between indices below/above break is fixed at 1
- ◆ Large Doppler factor (>40 for 13th) is required by hard and flat VHE SED
- ♦ Extreme γ-ray state is interpreted to be caused by:
 - ▶ high Compton dominance related to small emission region
 - strong relativistic boost because of large Doppler factor

Parameters	13 th June	14th June
Doppler factor δ	40-60	30-50
Emission region size R [cm]	7×10 ¹⁴ —10 ¹⁵	8×10 ¹⁴ —10 ¹⁵
Magnetic field strength B [G]	0.10 - 0.25	0.2 - 1.4
Electron break Lorentz factor y _{e,brk}	4×10 ⁵ —10 ⁶	$10^5 - 5 \times 10^5$
Low-energy electron index n ₁	2.2-3.2	2.2 - 3.2
Jet luminosity [erg/s]	$(1-5)\times10^{43}$	$(1-3)\times10^{43}$

HADRONIC MODEL

- **♦** One-zone proton-synchrotron model
 - Proton spectrum: power-law with exponential cutoff
 - ▶ low-energy peak is attributed to electron synchrotron
- ♦ Doppler factor is mild (δ ~25)
- **♦** Max proton energy: ≥EeV
- **♦** Very strong magnetic field *B*≥150 G is required by fast variability in flux
 - electrons are in fast-cooling regime

Parameters	13 th June	14th June
Doppler factor δ	25	25
Emission region size R [cm]	2.1×10 ¹⁴	2.1×10 ¹⁴
Magnetic field strength B [G]	150	150
Proton max Lorentz factor $y_{p,max}$	7×10 ⁹	5×10 ⁹
Proton index n _p	2.23	2.23
Jet luminosity [erg/s]	1.5×10 ⁴⁶	1046

LEPTO-HADRONIC MODEL

- p-γ cascade component in addition to SSC for highenergy peak
- **♦** Extremely large jet power *L*_j≥10⁴⁸ erg/s is required
 - more than two orders of magnitude larger than Eddington luminosity
- ◆ Predicted neutrino flux is comparable with IceCube upper limit for 8-year data [IceCube Collaboration+ 18]
 - consistent with null detection

Parameters	13 th June
Doppler factor δ	45
Emission region size R [cm]	4×10 ¹⁴
Magnetic field strength B [G]	0.6
Proton max Lorentz factor $y_{p,max}$	6×10 ⁷
Proton index n _p	2.2
Jet luminosity [erg/s]	8×10 ⁴⁸

SUMMARY

Spectra and fast variability can be reproduced by either leptonic, hadronic or lepto-hadronic model

High flux and hard spectrum were observed in both γ-ray and X-ray during those flares

Leptonic (one-zone SSC) model requires large Doppler factor δ≥40

VHE SEDs are very flat and extends up to multi-TeV

Hadronic (*p*-synchrotron) model requires extreme magnetic field *B*≥150 G

Fast variability in VHE flux with time scale of ~40 min was observed

Lepto-hadronic (SSC + $p-\gamma$) model implies producing detectable neutrino emission during similar flares is difficult

BACK UP

Contained

in MAGIC

observation

periods

OBSERVATIONS AND DATA ANALYSIS

MAGIC

- Observation time
 - 13th June: 137 min
 - 14th June: 81 min
- Energy threshold: ~100 GeV
- ► Spectral fit with some functions for 100 GeV—9 TeV on both nights
- Light curve with 10-min binning

- Observation time
 - 13th June: 70 min
 - 14th June: 15 min
- Spectral fit with power-law and log-parabola for >0.5 KeV

Fermi-LAT

- Survey mode
- Data of 1.5 days are combined
 - for statistics
 - Covering both MAGIC observation periods
- Spectral fit with power-law for 0.3—300 GeV

- Observation time
 - 13th June: 314 min
 - 14th June: 138—275 min
- Waveband filters
 - 13th June: W1 and W2
 - 14th June: W1, M1 and W2
- Flux for each filter

FITTING PARAMETERS of VHE SPECTRA on 13th and 14th June 2016

◆ Fit range: 0.1 — 9 TeV

Time 13th June	Flux ^a $(10^{-10} \text{cm}^{-2} \cdot \text{s}^{-1})$	Fit model	F_0 (10 ⁻⁹ TeV ⁻¹ · cm ⁻² · s ⁻¹)	Γ or α	E_{cut} (TeV)	$oldsymbol{eta}$	E_{peak}^{b} (TeV)	$\chi^2/d.o.f$
1 June	4.06 ± 0.13	(1) PL	$1.81^{+0.05}_{-0.05}$	$2.00^{+0.02}_{-0.02}$	• • •	• • •	• • •	34.0/10
02:15-04:37		(2) PL w/ cutoff	$1.93^{+0.06}_{-0.06}$	$1.81^{+0.05}_{-0.05}$	$5.4^{+1.7}_{-1.1}$	• • •	• • •	14.1/9
(MJD 57552.094		(3) LogP	$1.89^{+0.05}_{-0.05}$	$1.83^{+0.04}_{-0.04}$	• • •	$0.24^{+0.05}_{-0.05}$	$0.67^{+0.09}_{-0.07}$	11.4/9
-57552.192)		(4) LogP w/ cutoff	$1.89^{+0.05}_{-0.05}$	$1.83^{+0.04}_{-0.04}$	$+\infty^c$	$0.24^{+0.05}_{-0.05}$	$0.67^{+0.002}_{-0.002}$	11.4/8
14th June	3.28 ± 0.13	(1) PL	$1.46^{+0.05}_{-0.04}$	$2.07^{+0.03}_{-0.03}$	• • •	• • •	• • •	35.3/10
02:07-03:35		(2) PL w/ cutoff	$1.67^{+0.07}_{-0.07}$	$1.77^{+0.07}_{-0.07}$	$2.9^{+0.8}_{-0.5}$	• • •	• • •	5.9/9
(MJD 57553.088		(3) LogP	$1.58^{+0.05}_{-0.05}$	$1.86^{+0.05}_{-0.05}$	• • •	$0.36^{+0.07}_{-0.07}$	$0.47^{+0.05}_{-0.05}$	6.0/9
-57553.149)		(4) LogP w/ cutoff	$1.63^{+0.09}_{-0.08}$	$1.81^{+0.07}_{-0.07}$	$5.7^{+6.2}_{-6.2}$	$0.18^{+0.21}_{-0.20}$	$1.0^{+1.8}_{-1.8}$	5.3/8

PL:

$$\frac{\mathrm{d}F}{\mathrm{d}E} = F_0 \left(\frac{E}{E_0}\right)^{-1}$$

LogP:

$$\frac{\mathrm{d}F}{\mathrm{d}E} = F_0 \left(\frac{E}{E_0}\right)^{-\alpha - \beta [\log_{10}(E/E_0)]}$$

PL w/ cutoff: $\frac{dF}{dE} = F_0 \left(\frac{E}{E_0}\right)^{-\Gamma} \exp\left(-\frac{E}{E_{cut}}\right)$

LogP w/ cutoff:
$$\frac{\mathrm{d}F}{\mathrm{d}E} = F_0 \left(\frac{E}{\mathrm{E}_0}\right)^{-\alpha - \beta [\log_{10}(E/\mathrm{E}_0)]} \exp\left(-\frac{E}{E_{cut}}\right)$$

PARAMETERS for MODELING

		13th June		14th June	Prelimin
Parameters	SSC	Hadronic	Lepto-hadronic	SSC	Hadronic
δ	40–60	25	45	30–50	25
$B\left(\mathbf{G}\right)$	0.1-0.25	150	0.6	0.2 - 0.4	150
<i>R</i> (cm)	$7 \times 10^{14} - 10^{15}$	2.1×10^{14}	4×10^{14}	$8 \times 10^{14} - 10^{15}$	2.1×10^{14}
n_1	2.2-2.3	2.3	2.3	2.2-2.3	2.28
n_2	3.2-3.3	• • •	3.3	3.2-3.3	• • •
$\gamma_{e, ext{min}}$	7×10^{2}	5	8×10^{2}	$3-7 \times 10^2$	5
$\gamma_{e, ext{max}}$	$10^6 - 7 \times 10^6$	5×10^{4}	7×10^{6}	$10^6 - 7 \times 10^6$	5×10^4
$\gamma_{e,\mathrm{brk}}$	$4 \times 10^5 - 10^6$	• • •	2×10^{5}	$10^5 - 5 \times 10^5$	• • •
n_p	• • •	2.23	2.2	• • •	2.23
$\gamma_{p, ext{min}}$	• • •	1	1	• • •	1
$\gamma_{p,\max}$	• • •	7×10^{9}	6×10^7	• • •	5×10^{9}
L_j (erg/s)	$10^{43} - 5 \times 10^{43}$	1.5×10^{46}	8×10^{48}	$10^{43} - 3 \times 10^{43}$	10^{46}

ACCELERATION/COOLING TIME SCALES

Hadronic model (13th June)

Lepto-hadronic model (13th June)

