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 5    It comes for free

 3    Neutrinos are weakly interacting
       ↦ New effects may stand out more clearly

 4    Neutrinos have a unique quantum number: flavor
       ↦ Powerful probe of neutrino physics (and astrophysics)
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Fundamental physics with HE cosmic neutrinos

▸ Numerous new-physics effects grow as ~ κn · En · L

▸ So we can probe κn ~ 4 · 10-47 (E/PeV)-n (L/Gpc)-1 PeV1-n

▸ Improvement over current limits: κ0 < 10-29 PeV, κ1 < 10-33

▸ Fundamental physics can be extracted from four neutrino observables:
    ▸ Spectral shape
    ▸ Angular distribution
    ▸ Flavor composition
    ▸ Timing



Fundamental physics with HE cosmic neutrinos

▸ Numerous new-physics effects grow as ~ κn · En · L

▸ So we can probe κn ~ 4 · 10-47 (E/PeV)-n (L/Gpc)-1 PeV1-n

▸ Improvement over current limits: κ0 < 10-29 PeV, κ1 < 10-33

▸ Fundamental physics can be extracted from four neutrino observables:
    ▸ Spectral shape
    ▸ Angular distribution
    ▸ Flavor composition
    ▸ Timing

n = -1: neutrino decay
n = 0: CPT-odd Lorentz violation
n = +1: CPT-even Lorentz violation



Fundamental physics with HE cosmic neutrinos

▸ Numerous new-physics effects grow as ~ κn · En · L

▸ So we can probe κn ~ 4 · 10-47 (E/PeV)-n (L/Gpc)-1 PeV1-n

▸ Improvement over current limits: κ0 < 10-29 PeV, κ1 < 10-33

▸ Fundamental physics can be extracted from four neutrino observables:
    ▸ Spectral shape
    ▸ Angular distribution
    ▸ Flavor composition
    ▸ Timing

In spite of
poor energy, angular, flavor reconstruction
& astrophysical unknowns

n = -1: neutrino decay
n = 0: CPT-odd Lorentz violation
n = +1: CPT-even Lorentz violation
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Particle Data Group

Deep inelastic
scattering:

νl + N → l- + X
νl + N → l+ + X



Measuring the high-energy cross section

Hooper, PRD 2002; Hussain et al., PRL 2006; Borriello et al., PRD 2008
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Cross sections from:
MB & Connolly PRL 2019
IceCube, Nature 2017 Ackermann et al., Astro2020 Decadal Survey (1903.04333)

 ▸ Fold in astrophysical unknowns 
   (spectral index, normalization)

 ▸ Compatible with SM predictions
 ▸ Still room for new physics
 ▸ Today, using IceCube: 

    ▸ Extracted from ~60 showers in 6 yr
    ▸ Limited by statistics

 ▸ Future, using IceCube-Gen2:
    ▸ × 5 volume  ⇒ 300 showers in 6 yr
    ▸ Reduce statistical error by 40% 
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 ▸ Fold in astrophysical unknowns 
   (spectral index, normalization)

 ▸ Compatible with SM predictions
 ▸ Still room for new physics
 ▸ Today, using IceCube: 

    ▸ Extracted from ~60 showers in 6 yr
    ▸ Limited by statistics

 ▸ Future, using IceCube-Gen2:
    ▸ × 5 volume  ⇒ 300 showers in 6 yr
    ▸ Reduce statistical error by 40% 

UHE uncertainties can be smaller:
Cooper-Sarkar, Mertsch, Sarkar et al., JHEP 2011



Flavor composition
Astrophysical neutrino sources Earth

Flavor mixing changes the number
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 ▸ Different processes yield different ratios of neutrinos of each flavor:
( fe,S, fμ,S, fτ,S ) ≡ (Ne,S, Nμ,S, Nτ,S )/Ntot 

 ▸ Flavor ratios at Earth (α = e, μ, τ):



Flavor composition
Astrophysical neutrino sources Earth

Flavor mixing changes the number

Up to a few Gpc

of ν of each flavor, Ne, Nμ, Nτ

νe

νμ

ντ

νe

νμ

ντ

 ▸ Different processes yield different ratios of neutrinos of each flavor:
( fe,S, fμ,S, fτ,S ) ≡ (Ne,S, Nμ,S, Nτ,S )/Ntot 

 ▸ Flavor ratios at Earth (α = e, μ, τ):
Standard oscillations

or
new physics



One likely TeV–PeV ν production scenario:
p + γ → π+ → μ+ + νμ   followed by   μ+ → e+ + νe + νμ

Full π decay chain
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Flavor can also probe the sources themselves: MB & Ahlers, PRL 2019 → Poster session 2 (Sat 27 & Mon 29)

Note: ν and ν are (so far) indistinguishable 
         in neutrino telescopes

All possible flavor 
ratios at the sources

+
Vary oscillation 

parameters within 3σ
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New physics – High-energy effects
For n = 0

(similar for n = 1)

Argüelles, Katori, Salvadó, PRL 2015

This can populate all of the triangle – 
▸ Use current atmospheric bounds on On,i:

   O0 < 10-23 GeV, O1/Λ1 < 10-27 GeV
▸ Sample the unknown new mixing angles

See also: Rasmusen et al., PRD 2017;  MB, Beacom, Winter PRL 2015; MB, Gago, Peña-Garay JCAP 2010; 
                Bazo, MB, Gago, Miranda IJMPA 2009; + many others
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An exciting decade ahead

κn ~ 4 · 10-47 (E/PeV)-n (L/Gpc)-1 PeV1-n κn ~ 4 · 10-50 (E/EeV)-n (L/Gpc)-1 EeV1-n

IceCube + ANTARES + Baikal
   + Growing statistics
   + Improved systematics

IceCube upgrade: NU7a, Mon 13:30 (Ishihara)
IceCube-Gen2
KM3NeT: NU7b, Mon 13:45 (Strandberg)
ANITA: NU3e, Fri 14:30 (Deaconu)
ARA: NU7f, Mon 14:45 (Oberla); NU3d, Fri 14:15 (Connolly)
ARIANNA: CR18a, Sat 16:30 (Nelles); NU7e, Mon 14:30 (Glaser); 
                      NU11h Wed 18:15 (Lahmann)
Baikal-GVD: NU7c, Mon 14:00 (Simkovic)
BEACON: NU10e, Wed 14:30 (Wissel)
GRAND: CR1f, Thu 14:45 (Decoene); NU10b, Wed 13:45 (Martineau)
POEMMA: CRI10h, Mon 18:15 (Olinto)
TRINITY: NU10c, Wed 14:00 (Otte)

Today: TeV–PeV astrophysical ν Next decade: EeV cosmogenic ν
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What are you taking home?
▸ Cosmic neutrinos are incisive probes of TeV–PeV physics

▸ We can do this now, in spite of astrophysical unknowns

▸ New physics comes in many shapes — so we need to be thorough

▸ Exciting prospects: larger statistics, better reconstruction, higher energies

More?
▸ Fundamental physics with high-energy cosmic neutrinos today and in the future, 1907.08690
▸ Astro2020: Fundamental physics with high-energy cosmic neutrinos, 1903.04333
▸ Astro2020: Astrophysics uniquely enabled by observations of high-energy cosmic neutrinos, 1903.04334
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What lies beyond?  Take your pick
▸ High-energy effective field theories
   ▸ Violation of Lorentz and CPT invariance
           [Barenboim & Quigg, PRD 2003; MB, Gago, Peña-Garay, JHEP 2010; Kostelecky & Mewes 2004]
   ▸ Violation of equivalence principle
           [Gasperini, PRD 1989; Glashow et al., PRD 1997]
   ▸ Coupling to a gravitational torsion field
           [De Sabbata & Gasperini, Nuovo Cim. 1981]
   ▸ Renormalization-group-running of mixing parameters
           [MB, Gago, Jones, JHEP 2011]
   ▸ General non-unitary propagation
           [Ahlers, MB, Mu, PRD 2018]

▸ Active-sterile mixing
      [Aeikens et al., JCAP 2015; Brdar, JCAP 2017]

▸ Flavor-violating physics
   ▸ New neutrino-electron interactions
           [MB & Agarwalla, PRL 2019]
   ▸ New νν interactions 
           [Ng & Beacom, PRD 2014; Cherry, Friedland, Shoemaker, 1411.1071; Blum, Hook, Murase, 1408.3799]

▸ … 

Toho Company Ltd.



New physics in timing ― TeV–PeV 
Multiple secret νν scatterings may delay the arrival of neutrinos from a transient

Characteristic time delay: Optical depth to νν: τνν = nν σνν D
Shoemaker & Murase, 1903.08607

See also: Alcock & Hatchett, ApJ 1978



New physics in timing ― TeV–PeV 

See also: Alcock & Hatchett, ApJ 1978



New physics in the spectral shape: νν interactions
“Secret” neutrino interactions between 
astrophysical ν (PeV) and relic ν (0.1 meV):

Cross section:

Resonance energy:

Rosenstroem, MB, Tamborra, In prep.
Ng & Beacom, PRD 2014
Cherry, Friedland, Shoemaker, 1411.1071
Blum, Hook, Murase, 1408.3799

M = 10 MeV
g = 0.03
mν = 0.1 eV
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New physics in the angular distribution: ν-DM interactions

Expected: Fewer neutrinos coming from the Galactic Center
Observed: Isotropy

Interaction between astrophysical neutrinos and the Galactic dark matter profile — 

Argüelles, Kheirandish, Vincent, PRL 2017
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Argüelles, Kheirandish, Vincent, PRL 2017

Fermionic DM
Vector mediator



IceCube, Nature Phys. 2018

New physics in the energy & angular distribution
Lorentz invariance violation – Hamiltonian: H ~ m2/(2E) + a(3) – E · c(4) + E2 · a(5) – E3 · c(6)˚ ˚ ˚ ˚

(Using atmospheric neutrinos)
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IceCube, Nature Phys. 2018

New physics in the energy & angular distribution
Lorentz invariance violation – Hamiltonian: H ~ m2/(2E) + a(3) – E · c(4) + E2 · a(5) – E3 · c(6)

Best bounds come from IceCube

˚ ˚ ˚ ˚
Standard oscillations

Lorentz violation

(Using atmospheric neutrinos)
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Energy too low: Nν,up and Nν,down comparable
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Energy too high: flux too low, no upgoing events
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MB & Connolly, PRL 2019

Goldilocks region



The fine print

▸ High-energy ν‘s: astrophysical (isotropic) + atmospheric (anisotropic)
   ↦ We take into account the shape of the atmospheric contribution
▸ The shape of the astrophysical ν energy spectrum is still uncertain
   ↦ We take a E-γ spectrum in narrow energy bins
▸ NC showers are sub-dominant to CC showers, but they are indistinguishable
   ↦ Following Standard-Model predictions, we take σNC = σCC/3
▸ IceCube does not distinguish ν from ν, and their cross-sections are different
   ↦ We assume equal fluxes, expected from production via pp collisions
   ↦ We assume the avg. ratio <σνN/σνN> in each bin known, from SM predictions
▸ The flavor composition of astrophysical neutrinos is still uncertain
   ↦ We assume equal flux of each flavor, compatible with theory and observations
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What goes into the (likelihood) mix?
▸ Inside each energy bin, we freely vary
     ▸ Nast (showers from astrophysical neutrinos)
     ▸ Natm (showers from atmospheric neutrinos)
     ▸ γ (astrophysical spectral index)
     ▸ σCC (neutrino-nucleon charged-current cross section)

▸ For each combination, we generate the angular and energy shower spectrum…
▸ … and compare it to the observed HESE spectrum via a likelihood
▸ Maximum likelihood yields σCC (marginalized over nuisance parameters)

▸ Bins are independent of each other – there are no (significant) cross-bin correlations
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▸ Inside each energy bin, we freely vary
     ▸ Nast (showers from astrophysical neutrinos)
     ▸ Natm (showers from atmospheric neutrinos)
     ▸ γ (astrophysical spectral index)
     ▸ σCC (neutrino-nucleon charged-current cross section)

▸ For each combination, we generate the angular and energy shower spectrum…
▸ … and compare it to the observed HESE spectrum via a likelihood
▸ Maximum likelihood yields σCC (marginalized over nuisance parameters)

▸ Bins are independent of each other – there are no (significant) cross-bin correlations

Including detector resolution
(10% in energy, 15° in direction)
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Marginalized cross section in each bin

MB & A. Connolly, 1711.11043
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Using through-going muons instead

IceCube, Nature 2017

▸ Use ~104 through-going muons
▸ Measured: dEμ/dx
▸ Inferred: Eμ  ≈ dEμ/dx
▸ From simulations (uncertain): 
   most likely Eν given Eμ

▸ Fit the ratio σobs/σSM
   1.30      (stat.)      (syst.)
▸ All events grouped in a single
   energy bin 6–980 TeV 

-0.19
+0.21

-0.43
+0.39



Bonus: Measuring the inelasticity ⟨y⟩

Muon track

Hadronic shower
Esh

Etr

IceCube, PRD 2019

▸ Inelasticity in CC νμ interaction νμ + N → μ + X:
    EX = y Eν   and   Eμ = (1-y) Eν   ⇒  y = (1 + Eμ/EX)-1

▸ The value of y follows a distribution dσ/dy

▸ In a HESE starting track: 
     EX = Esh (energy of shower)
     Eμ = Etr (energy of track)

▸ New IceCube analysis:
   ▸ 5 years of starting-track data (2650 tracks)
   ▸ Machine learning separates shower from track
   ▸ Different y distributions for ν and ν

 y = (1 + Etr/Esh)-1
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Two classes of new physics
▸ Neutrinos propagate as an incoherent mix of ν1, ν2, ν3

▸ Each one has a different flavor content:

▸ Flavor ratios at Earth are the result of their combination
▸ New physics may:
   ▸ Only reweigh the proportion of each νi reaching Earth (e.g., ν decay)
   ▸ Redefine the propagation states (e.g., Lorentz-invariance violation)
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Measuring the neutrino lifetime

Find the value of D so that decay is 
complete, i.e., fα,⊕ = |Uα1|2, for

▸ Any value of mixing parameters; and
▸ Any flavor ratios at the sources
(Assume equal lifetimes of ν2, ν3)

MB, Beacom, Murase, PRD 2017
Baerwald, MB, Winter, JCAP 2012
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(Assume equal lifetimes of ν2, ν3)
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Baerwald, MB, Winter, JCAP 2012

Fraction of ν2, ν3 remaining at Earth

fα,⊕ = |Uα1|2 when D < 0.01



MB, Beacom, Murase, PRD 2017
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Pure ν1 disfavored 
at > 2σMB, Beacom, Murase, PRD 2017
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Using unitarity to constrain new physics

Ahlers, MB, Mu, PRD 2018
See also: Xu, He, Rodejohann, JCAP 2014

Htot = Hstd + HNP

†

▸ New mixing angles unconstrained
▸ Use unitarity (UNPUNP = 1) to bound 
   all possible flavor ratios at Earth
▸ Can be used as prior in 
   new-physics searches in IceCube



Side note: Improving flavor-tagging using echoes
Late-time light (echoes) from muon decays and neutron captures can separate 
showers made by νe and ντ – 

Li, MB, Beacom, PRL 2019
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Hadronic vs. electromagnetic showers

Li, MB, Beacom, PRL 2019

For 100-TeV shower



Energy dependence of the flavor composition?
Different neutrino production channels accessible at different energies – 

MB, Beacom, Winter PRL 2015

▸ TP13: pγ model, target photons from electron-positron annihilation [Hümmer+, Astropart. Phys. 2010]

▸ Will be difficult to resolve [Kashti, Waxman, PRL 2005; Lipari, Lusignoli, Meloni, PRD 2007]
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