Fundamental Physics with High-Energy Astrophysical Neutrinos *Today* and in the Future

Mauricio Bustamante Niels Bohr Institute, University of Copenhagen

In collaboration with:

Carlos A. Argüelles, Ali Kheirandish, Sergio Palomares-Ruiz, Jordi Salvadó, Aaron C. Vincent

36th ICRC Madison, WI, July 25, 2019

- 1 They have the highest energies (~PeV)
 - → Probe physics at new energy scales

- They have the highest energies (~PeV)→ Probe physics at new energy scales
- They have the longest baselines (~Gpc)
 → Tiny effects can accumulate and become observable

- 1 They have the highest energies (~PeV)
 - → Probe physics at new energy scales
- They have the longest baselines (~Gpc)
 - → Tiny effects can accumulate and become observable

- 3 Neutrinos are weakly interacting
 - → New effects may stand out more clearly

- 3 Neutrinos are weakly interacting
 - → New effects may stand out more clearly

- 4 Neutrinos have a unique quantum number: flavor
 - → Powerful probe of neutrino physics (and astrophysics)

- 3 Neutrinos are weakly interacting
 - → New effects may stand out more clearly

- 4 Neutrinos have a unique quantum number: flavor
 - → Powerful probe of neutrino physics (and astrophysics)

5 It comes for free

IceCube (8 years)

km³ in-ice Cherenkov detector

In the face of astrophysical unknowns, can we extract fundamental TeV–PeV ν physics?

In the face of astrophysical unknowns, can we extract fundamental TeV–PeV ν physics?

Yes.

In the face of astrophysical unknowns, can we extract fundamental TeV–PeV ν physics?

Yes.

Already today.

Fundamental physics with HE cosmic neutrinos

- ► Numerous new-physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$
- ► So we can probe $\kappa_n \sim 4 \cdot 10^{-47} \, (E/\text{PeV})^{-n} \, (L/\text{Gpc})^{-1} \, \text{PeV}^{1-n}$
- ▶ Improvement over current limits: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$
- ► Fundamental physics can be extracted from four neutrino observables:
 - ► Spectral shape
 - ► Angular distribution
 - ► Flavor composition
 - ► Timing

Fundamental physics with HE cosmic neutrinos

- ► Numerous new-physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$ $\begin{cases} n = -1 \text{: neutrino decay} \\ n = 0 \text{: CPT-odd Lorentz violation} \\ n = +1 \text{: CPT-even Lorentz violation} \end{cases}$
- ► So we can probe $\kappa_n \sim 4 \cdot 10^{-47} \, (E/\text{PeV})^{-n} \, (L/\text{Gpc})^{-1} \, \text{PeV}^{1-n}$
- ▶ Improvement over current limits: κ_0 < 10⁻²⁹ PeV, κ_1 < 10⁻³³
- ► Fundamental physics can be extracted from four neutrino observables:
 - ► Spectral shape
 - ► Angular distribution
 - ► Flavor composition
 - ► Timing

Fundamental physics with HE cosmic neutrinos

- ► Numerous new-physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$ $\begin{cases} n = -1 \text{: neutrino decay} \\ n = 0 \text{: CPT-odd Lorentz violation} \\ n = +1 \text{: CPT-even Lorentz violation} \end{cases}$
- ► So we can probe $\kappa_n \sim 4 \cdot 10^{-47} \, (E/\text{PeV})^{-n} \, (L/\text{Gpc})^{-1} \, \text{PeV}^{1-n}$
- ▶ Improvement over current limits: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$
- ► Fundamental physics can be extracted from four neutrino observables:
 - ► Spectral shape

 - ▶ Timing

 Angular distribution
 Flavor composition
 In spite of poor energy, angular, flavor reconstruction & astrophysical unknowns *In spite of*

Particle Data Group

Particle Data Group

Particle Data Group

Particle Data Group

Deep inelastic

Particle Data Group

Measuring the high-energy cross section

Optical depth to
$$\nu N$$
 int's = $\frac{\text{Distance from Earth's surface to IceCube}}{\text{Mean free path inside Earth}} \equiv \tau(E_{\nu}, \theta_{z}) \propto \sigma_{\nu N}$

Below ~ 10 TeV: Earth is transparent

Above ~ 10 TeV: Earth is opaque

Measuring the high-energy cross section

Optical depth to
$$\nu N$$
 int's = $\frac{\text{Distance from Earth's surface to IceCube}}{\text{Mean free path inside Earth}} \equiv \tau(E_{\nu}, \theta_{z}) \propto \sigma_{\nu N}$

Below ~ 10 TeV: Earth is transparent

Above ~ 10 TeV: Earth is opaque

Measuring the high-energy cross section

Optical depth to
$$\nu N$$
 int's = $\frac{\text{Distance from Earth's surface to IceCube}}{\text{Mean free path inside Earth}} \equiv \tau(E_{\nu}, \theta_{z}) \propto \sigma_{\nu N}$

Below ~ 10 TeV: Earth is transparent

Above ~ 10 TeV: Earth is opaque

- ► Fold in astrophysical unknowns (spectral index, normalization)
- ► Compatible with SM predictions
- ► Still room for new physics
- ► Today, using IceCube:
 - ► Extracted from ~60 showers in 6 yr
 - ► Limited by statistics
- ► Future, using IceCube-Gen2:
 - \triangleright × 5 volume \Rightarrow 300 showers in 6 yr
 - ► Reduce statistical error by 40%

Center-of-mass energy \sqrt{s} [GeV]

Cross sections from:

MB & Connolly PRL 2019 IceCube, Nature 2017

Ackermann et al., Astro2020 Decadal Survey (1903.04333)

UHE uncertainties can be smaller: Cooper-Sarkar, Mertsch, Sarkar *et al.*, *JHEP* 2011

- ► Fold in astrophysical unknowns (spectral index, normalization)
- ► Compatible with SM predictions
- ► Still room for new physics
- ► Today, using IceCube:
 - ► Extracted from ~60 showers in 6 yr
 - ► Limited by statistics
- ► Future, using IceCube-Gen2:
 - \triangleright × 5 volume \Rightarrow 300 showers in 6 yr
 - ► Reduce statistical error by 40%

Cross sections from:

MB & Connolly PRL 2019 IceCube, Nature 2017

Ackermann et al., Astro2020 Decadal Survey (1903.04333)

Flavor composition

Astrophysical neutrino sources

Earth

▶ Different processes yield different ratios of neutrinos of each flavor:

$$(f_{e,S},f_{\mu,S},f_{\tau,S})\equiv(N_{e,S},N_{\mu,S},N_{\tau,S})/N_{\mathrm{tot}}$$

► Flavor ratios at Earth ($\alpha = e, \mu, \tau$):

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta}\to\nu_{\alpha}} f_{\beta,S}$$

Flavor composition

Astrophysical neutrino sources

Earth

▶ Different processes yield different ratios of neutrinos of each flavor:

$$(f_{e,S},f_{\mu,S},f_{\tau,S})\equiv(N_{e,S},N_{\mu,S},N_{\tau,S})/N_{\mathrm{tot}}$$

► Flavor ratios at Earth ($\alpha = e, \mu, \tau$):

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta}\to\nu_{\alpha}} f_{\beta,S}$$

Standard oscillations or new physics

One likely TeV–PeV
$$\nu$$
 production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

Full π decay chain (1/3:2/3:0)₅

Note: v and \bar{v} are (so far) indistinguishable in neutrino telescopes

Flavor can also probe the sources themselves: MB & Ahlers, PRL 2019 → Poster session 2 (Sat 27 & Mon 29)

Flavor can also probe the sources themselves: MB & Ahlers, PRL 2019 → Poster session 2 (Sat 27 & Mon 29)

Flavor can also probe the sources themselves: MB & Ahlers, PRL 2019 → Poster session 2 (Sat 27 & Mon 29)

Flavor can also probe the sources themselves: MB & Ahlers, PRL 2019 → Poster session 2 (Sat 27 & Mon 29)

Full π decay chain (1/3:2/3:0)₅

Muon damped (0:1:0)_s

Neutron decay (1:0:0)₅

Note: ν and $\bar{\nu}$ are (so far) indistinguishable in neutrino telescopes

All possible flavor ratios at the sources

十

Vary oscillation parameters within 3σ

Note: v and \bar{v} are (so far) indistinguishable in neutrino telescopes

Flavor can also probe the sources themselves: MB & Ahlers, PRL 2019 → Poster session 2 (Sat 27 & Mon 29)

Neutrino decay 30% of parameter space

 $v_2, v_3 \rightarrow v_1$ or $v_1, v_2 \rightarrow v_3$

Flavor ratios determined by how many v_1 , v_2 , v_3 survive:

 τ_2/m_2 , $\tau_3/m_3 > 10 \text{ s eV}^{-1}$

MB, Beacom, Murase *PRD* 2017 Baerwald, **MB**, Winter *JCAP* 2012

Neutrino decay 30% of parameter space

 $v_2, v_3 \rightarrow v_1$ or $v_1, v_2 \rightarrow v_3$

Flavor ratios determined by how many v_1 , v_2 , v_3 survive:

 τ_2/m_2 , $\tau_3/m_3 > 10 \text{ s eV}^{-1}$

MB, Beacom, Murase *PRD* 2017 Baerwald, **MB**, Winter *JCAP* 2012

Neutrino decay 30% of parameter space

 $v_2, v_3 \rightarrow v_1$ or $v_1, v_2 \rightarrow v_3$

Flavor ratios determined by how many v_1 , v_2 , v_3 survive:

 τ_2/m_2 , $\tau_3/m_3 > 10 \text{ s eV}^{-1}$

MB, Beacom, Murase *PRD* 2017 Baerwald, **MB**, Winter *JCAP* 2012

New physics – High-energy effects

$$H_{
m tot} = H_{
m std} + H_{
m NP}$$
 $H_{
m std} = rac{1}{2E} U_{
m PMNS}^{\dagger} \, {
m diag} \left(0, \Delta m_{21}^2, \Delta m_{31}^2
ight) \, U_{
m PMNS}$

$$H_{\mathsf{NP}} = \sum_{n} \left(\frac{E}{\Lambda_n} \right)^n U_n^{\dagger} \operatorname{diag} \left(O_{n,1}, O_{n,2}, O_{n,3} \right) U_n$$

This can populate *all* of the triangle –

- ► Use current atmospheric bounds on $O_{n,i}$: $O_0 < 10^{-23}$ GeV, $O_1/\Lambda_1 < 10^{-27}$ GeV
- ► Sample the unknown new mixing angles

See also: Rasmusen *et al.*, *PRD* 2017; **MB**, Beacom, Winter *PRL* 2015; **MB**, Gago, Peña-Garay *JCAP* 2010; Bazo, **MB**, Gago, Miranda *IJMPA* 2009; + many others

Argüelles, Katori, Salvadó, PRL 2015

New physics – High-energy effects

$$H_{ ext{tot}} = H_{ ext{std}} + H_{ ext{NP}}$$
 $H_{ ext{std}} = rac{1}{2E} U_{ ext{PMNS}}^{\dagger} \, ext{diag} \left(0, \Delta m_{21}^2, \Delta m_{31}^2
ight) U_{ ext{PMNS}}$

$$H_{\mathsf{NP}} = \sum_{n} \left(\frac{E}{\Lambda_{n}} \right)^{n} U_{n}^{\dagger} \operatorname{diag} \left(O_{n,1}, O_{n,2}, O_{n,3} \right) U_{n}$$

This can populate all of the triangle –

- ▶ Use current atmospheric bounds on $O_{n,i}$: $O_0 < 10^{-23}$ GeV, $O_1/\Lambda_1 < 10^{-27}$ GeV
- ► Sample the unknown new mixing angles

See also: Rasmusen *et al.*, *PRD* 2017; **MB**, Beacom, Winter *PRL* 2015; **MB**, Gago, Peña-Garay *JCAP* 2010; Bazo, **MB**, Gago, Miranda *IJMPA* 2009; + many others

An exciting decade ahead

Today: TeV–PeV astrophysical ν

$$\kappa_n \sim 4 \cdot 10^{-47} (E/\text{PeV})^{-n} (L/\text{Gpc})^{-1} \text{PeV}^{1-n}$$

IceCube + ANTARES + Baikal

- + Growing statistics
- + Improved systematics

Next decade: EeV cosmogenic ν

$$\kappa_n \sim 4 \cdot 10^{-50} \ (E/\text{EeV})^{-n} \ (L/\text{Gpc})^{-1} \ \text{EeV}^{1-n}$$

IceCube upgrade: NU7a, Mon 13:30 (Ishihara)

IceCube-Gen2

KM3NeT: NU7b, Mon 13:45 (Strandberg)

ANITA: NU3e, Fri 14:30 (Deaconu)

ARA: NU7f, Mon 14:45 (Oberla); NU3d, Fri 14:15 (Connolly)

ARIANNA: CR18a, Sat 16:30 (Nelles); NU7e, Mon 14:30 (Glaser);

NU11h Wed 18:15 (Lahmann)

Baikal-GVD: NU7c, Mon 14:00 (Simkovic)

BEACON: NU10e, Wed 14:30 (Wissel)

GRAND: CR1f, Thu 14:45 (Decoene); NU10b, Wed 13:45 (Martineau)

POEMMA: CRI10h, Mon 18:15 (Olinto) TRINITY: NU10c, Wed 14:00 (Otte)

An exciting decade ahead

Today: TeV–PeV astrophysical ν

$$\kappa_n \sim 4 \cdot 10^{-47} \ (E/\text{PeV})^{-n} \ (L/\text{Gpc})^{-1} \ \text{PeV}^{1-n}$$

IceCube + ANTARES + Baikal

- + Growing statistics
- + Improved systematics

Next decade: EeV cosmogenic ν

$$\kappa_n \sim 4 \cdot 10^{-50} \ (E/\text{EeV})^{-n} \ (L/\text{Gpc})^{-1} \ \text{EeV}^{1-n}$$

IceCube upgrade: NU7a, Mon 13:30 (Ishihara)

IceCube-Gen2

KM3NeT: NU7b, Mon 13:45 (Strandberg)

ANITA: NU3e, Fri 14:30 (Deaconu)

ARA: NU7f, Mon 14:45 (Oberla); NU3d, Fri 14:15 (Connolly)

ARIANNA: CR18a, Sat 16:30 (Nelles); NU7e, Mon 14:30 (Glaser);

NU11h Wed 18:15 (Lahmann)

Baikal-GVD: NU7c, Mon 14:00 (Simkovic)

BEACON: NU10e, Wed 14:30 (Wissel)

GRAND: CR1f, Thu 14:45 (Decoene); NU10b, Wed 13:45 (Martineau)

POEMMA: CRI10h, Mon 18:15 (Olinto) TRINITY: NU10c, Wed 14:00 (Otte)

An exciting decade ahead

Today: TeV–PeV astrophysical ν

$$\kappa_n \sim 4 \cdot 10^{-47} \ (E/\text{PeV})^{-n} \ (L/\text{Gpc})^{-1} \ \text{PeV}^{1-n}$$

IceCube + ANTARES + Baikal

- + Growing statistics
- + Improved systematics

Next decade: EeV cosmogenic ν

$$\kappa_n \sim 4 \cdot 10^{-50} \ (E/\text{EeV})^{-n} \ (L/\text{Gpc})^{-1} \ \text{EeV}^{1-n}$$

IceCube upgrade: NU7a, Mon 13:30 (Ishihara)

IceCube-Gen2

KM3NeT: NU7b, Mon 13:45 (Strandberg)

ANITA: NU3e, Fri 14:30 (Deaconu)

ARA: NU7f, Mon 14:45 (Oberla); NU3d, Fri 14:15 (Connolly)

ARIANNA: CR18a, Sat 16:30 (Nelles); NU7e, Mon 14:30 (Glaser);

NU11h Wed 18:15 (Lahmann)

Baikal-GVD: NU7c, Mon 14:00 (Simkovic)

BEACON: NU10e, Wed 14:30 (Wissel)

GRAND: CR1f, Thu 14:45 (Decoene); NU10b, Wed 13:45 (Martineau)

POEMMA: CRI10h, Mon 18:15 (Olinto) TRINITY: NU10c, Wed 14:00 (Otte)

What are you taking home?

- ► Cosmic neutrinos are incisive probes of TeV–PeV physics
- ▶ We can do this *now*, in spite of astrophysical unknowns
- ▶ New physics comes in many shapes so we need to be thorough
- ► Exciting prospects: larger statistics, better reconstruction, higher energies

More?

- ► Fundamental physics with high-energy cosmic neutrinos today and in the future, 1907.08690
- ► Astro2020: Fundamental physics with high-energy cosmic neutrinos, 1903.04333
- Astro2020: Astrophysics uniquely enabled by observations of high-energy cosmic neutrinos, 1903.04334

What are you taking home?

- ► Cosmic neutrinos are incisive probes of TeV–PeV physics
- ▶ We can do this *now*, in spite of astrophysical unknowns
- ▶ New physics comes in many shapes so we need to be thorough
- ► Exciting prospects: larger statistics, better reconstruction, higher energies

More?

- ► Fundamental physics with high-energy cosmic neutrinos today and in the future, 1907.08690
- ► Astro2020: Fundamental physics with high-energy cosmic neutrinos, 1903.04333
- ► Astro2020: Astrophysics uniquely enabled by observations of high-energy cosmic neutrinos, 1903.04334

Backup slides

What lies beyond? Take your pick

- ► High-energy effective field theories
 - ► Violation of Lorentz and CPT invariance
 [Barenboim & Quigg, PRD 2003; MB, Gago, Peña-Garay, JHEP 2010; Kostelecky & Mewes 2004]
 - ► Violation of equivalence principle [Gasperini, PRD 1989; Glashow et al., PRD 1997]
 - ► Coupling to a gravitational torsion field [De Sabbata & Gasperini, Nuovo Cim. 1981]
 - ► Renormalization-group-running of mixing parameters [MB, Gago, Jones, JHEP 2011]
 - ► General non-unitary propagation [Ahlers, MB, Mu, PRD 2018]
- ► Active-sterile mixing

 [Aeikens et al., JCAP 2015; Brdar, JCAP 2017]
- ► Flavor-violating physics
 - ► New neutrino-electron interactions [MB & Agarwalla, PRL 2019]
 - ► New vv interactions
 [Ng & Beacom, PRD 2014; Cherry, Friedland, Shoemaker, 1411.1071; Blum, Hook, Murase, 1408.3799]

Toho Company Ltd.

New physics in timing — TeV–PeV

Multiple secret $\nu\nu$ scatterings may delay the arrival of neutrinos from a transient

Characteristic time delay:

Optical depth to $\nu\nu$: $\tau_{\nu\nu} = n_{\nu} \sigma_{\nu\nu} D$

$$\Delta t \approx 1500 \,\mathrm{s} \left(\frac{\tau_{\nu\nu}}{30}\right) \left(\frac{D}{3 \,\mathrm{Gpc}}\right) \left(\frac{m_{\nu}}{0.1 \,\mathrm{eV}}\right) \left(\frac{0.1 \,\mathrm{PeV}}{E_{\nu}}\right)$$

See also: Alcock & Hatchett, ApJ 1978

New physics in timing — TeV–PeV

"Secret" neutrino interactions between astrophysical ν (PeV) and relic ν (0.1 meV):

Cross section:
$$\sigma = \frac{g^4}{4\pi} \frac{s}{(s - M^2)^2 + M^2 \Gamma^2}$$

Resonance energy:
$$E_{\text{res}} = \frac{M^2}{2m_2}$$

Rosenstroem, MB, Tamborra, In prep.

Ng & Beacom, PRD 2014

Cherry, Friedland, Shoemaker, 1411.1071

Blum, Hook, Murase, 1408.3799

"Secret" neutrino interactions between astrophysical ν (PeV) and relic ν (0.1 meV):

Resonance energy:
$$E_{\text{res}} = \frac{M^2}{2m_{\gamma i}}$$

Rosenstroem, MB, Tamborra, In prep.

Ng & Beacom, PRD 2014

Cherry, Friedland, Shoemaker, 1411.1071

Blum, Hook, Murase, 1408.3799

"Secret" neutrino interactions between astrophysical ν (PeV) and relic ν (0.1 meV):

Resonance energy:
$$E_{\text{res}} = \frac{M^2}{2m_N}$$

Rosenstroem, **MB**, Tamborra, *In prep*. Ng & Beacom, *PRD* 2014

Cherry, Friedland, Shoemaker, 1411.1071

Blum, Hook, Murase, 1408.3799

"Secret" neutrino interactions between astrophysical ν (PeV) and relic ν (0.1 meV):

$$M = 10 \text{ MeV}$$

 $g = 0.03$
 $m_{\nu} = 0.1 \text{ eV}$

Cross section:
$$\sigma = \frac{g^4}{4\pi} \frac{s}{(s - M^2)^2 + M^2 \Gamma^2}$$

Resonance energy:
$$E_{\text{res}} = \frac{M^2}{2m_{\odot}}$$

New physics in the angular distribution: ν -DM interactions

Interaction between astrophysical neutrinos and the Galactic dark matter profile —

Expected: Fewer neutrinos coming from the Galactic Center

Observed: Isotropy

New physics in the angular distribution: ν -DM interactions

Interaction between astrophysical neutrinos and the Galactic dark matter profile —

Expected: Fewer neutrinos coming from the Galactic Center

Observed: Isotropy

New physics in the energy & angular distribution

Lorentz invariance violation – Hamiltonian: $H \sim m^2/(2E) + \mathring{a}^{(3)} - E \cdot \mathring{c}^{(4)} + E^2 \cdot \mathring{a}^{(5)} - E^3 \cdot \mathring{c}^{(6)}$

Standard oscillations

Lorentz invariance violation – Hamiltonian: $H \sim m^2/(2E) + \mathring{a}^{(3)} - E \cdot \mathring{c}^{(4)} + E^2 \cdot \mathring{a}^{(5)} - E^3 \cdot \mathring{c}^{(6)}$

Lorentz violation

Standard oscillations

Lorentz invariance violation – Hamiltonian: $H \sim m^2/(2E) + \mathring{a}^{(3)} - E \cdot \mathring{c}^{(4)} + E^2 \cdot \mathring{a}^{(5)} - E^3 \cdot \mathring{c}^{(6)}$

Figure courtesy of Markus Ahlers Also in: Van Elewyck *et al.*, PoS(ICRC2019), 1023

Figure courtesy of Markus Ahlers Also in: Van Elewyck *et al.*, PoS(ICRC2019), 1023

Figure courtesy of Markus Ahlers Also in: Van Elewyck *et al.*, PoS(ICRC2019), 1023

In-Earth distance to IceCube *D* [km] $2R \oplus 10^4$ $10^3 10^2 10$ 1.5 1.0 **HESE** showers -0.96 years 10^{6} Deposited energy E_{dep} [GeV] -0.8Attenuation in Earth 0.5 10^{5} 0.4 0.3 0.2 0.1 10^{4} -1.00.0 -0.50.5 1.0 0.0

Neutrino zenith angle $\cos \theta_z$

MB & Connolly, PRL 2019

In-Earth distance to IceCube *D* [km] $2R \oplus 10^4$ $10^3 10^2 10$ 1.5 1.0 **HESE** showers -0.96 years 10^{6} Deposited energy E_{dep} [GeV] -0.8Attenuation in Earth 0.5 10^{5} 0.4 0.3 0.2 0.1 10^{4} -1.00.0 -0.50.5 1.0 0.0

Neutrino zenith angle $\cos \theta_z$

MB & Connolly, PRL 2019

In-Earth distance to IceCube *D* [km] 2R⊕ 10^4 $10^3 10^2 10$ 1.5 1.0 **HESE** showers -0.96 years 10^{6} Deposited energy E_{dep} [GeV] -0.8Goldilocks region Attenuation in Earth 0.5 0.4 0.3 0.2 0.1 10^{4} -1.0

0.5

-0.5

0.0

Neutrino zenith angle $\cos \theta_z$

MB & Connolly, PRL 2019

0.0

1.0

The fine print

- ► High-energy ν 's: astrophysical (isotropic) + atmospheric (anisotropic)
 - → We take into account the shape of the atmospheric contribution
- \triangleright The shape of the astrophysical ν energy spectrum is still uncertain
 - \rightarrow We take a $E^{-\gamma}$ spectrum in *narrow* energy bins
- ▶ NC showers are sub-dominant to CC showers, but they are indistinguishable
 - \rightarrow Following Standard-Model predictions, we take $\sigma_{NC} = \sigma_{CC}/3$
- ▶ IceCube does not **distinguish** ν **from** $\bar{\nu}$, and their cross-sections are different
 - → We assume equal fluxes, expected from production via pp collisions
 - \rightarrow We assume the avg. ratio $\langle \sigma_{\nu N}/\bar{\sigma}_{\nu N} \rangle$ in each bin known, from SM predictions
- ▶ The **flavor composition** of astrophysical neutrinos is still uncertain
 - → We assume equal flux of each flavor, compatible with theory and observations

What goes into the (likelihood) mix?

- ▶ Inside each energy bin, we freely vary
 - $ightharpoonup N_{ast}$ (showers from astrophysical neutrinos)
 - $ightharpoonup N_{atm}$ (showers from atmospheric neutrinos)
 - $ightharpoonup \gamma$ (astrophysical spectral index)
 - $\triangleright \sigma_{CC}$ (neutrino-nucleon charged-current cross section)
- ▶ For each combination, we generate the angular and energy shower spectrum...
- ▶ ... and compare it to the observed HESE spectrum via a likelihood
- ▶ Maximum likelihood yields σ_{CC} (marginalized over nuisance parameters)
- ▶ Bins are independent of each other there are no (significant) cross-bin correlations

What goes into the (likelihood) mix?

- ▶ Inside each energy bin, we freely vary
 - $ightharpoonup N_{ast}$ (showers from astrophysical neutrinos)
 - $ightharpoonup N_{atm}$ (showers from atmospheric neutrinos)
 - $ightharpoonup \gamma$ (astrophysical spectral index)
 - $ightharpoonup \sigma_{CC}$ (neutrino-nucleon charged-current cross section)

Including detector resolution (10% in energy, 15° in direction)

- ▶ For each combination, we generate the angular and energy shower spectrum...
- ▶ ... and compare it to the observed HESE spectrum via a likelihood
- ▶ Maximum likelihood yields σ_{CC} (marginalized over nuisance parameters)
- ▶ Bins are independent of each other there are no (significant) cross-bin correlations

Marginalized cross section in each bin

TABLE I. Neutrino-nucleon charged-current inclusive cross sections, averaged between neutrinos $(\sigma_{\nu N}^{\rm CC})$ and antineutrinos $(\sigma_{\bar{\nu}N}^{\rm CC})$, extracted from 6 years of IceCube HESE showers. To obtain these results, we fixed $\sigma_{\bar{\nu}N}^{\rm CC} = \langle \sigma_{\bar{\nu}N}^{\rm CC} / \sigma_{\nu N}^{\rm CC} \rangle$ showers. Where $\langle \sigma_{\bar{\nu}N}^{\rm CC} / \sigma_{\nu N}^{\rm CC} \rangle$ is the average ratio of $\bar{\nu}$ to ν cross sections calculated using the standard prediction from Ref. [60] — and $\sigma_{\nu N}^{\rm NC} = \sigma_{\nu N}^{\rm CC} / 3$, $\sigma_{\bar{\nu}N}^{\rm NC} = \sigma_{\bar{\nu}N}^{\rm CC} / 3$. Uncertainties are statistical plus systematic, added in quadrature.

E_{ν} [TeV]	$\langle E_{\nu} \rangle \text{ [TeV]}$	$\langle \sigma_{ar{ u}N}^{ m CC}/\sigma_{ u N}^{ m CC} angle$	$\log_{10}\left[\frac{1}{2}(\sigma_{\nu N}^{\rm CC} + \sigma_{\bar{\nu}N}^{\rm CC})/{\rm cm}^2\right]$
18 – 50	32	0.752	-34.35 ± 0.53
50 – 100	75	0.825	-33.80 ± 0.67
100 – 400	250	0.888	-33.84 ± 0.67
400 – 2004	1202	0.957	$> -33.21 \ (1\sigma)$

MB & A. Connolly, 1711.11043

Using through-going muons instead

- ► Use ~10⁴ through-going muons
- ► Measured: dE_{μ}/dx
- ► Inferred: $E_{\mu} \approx dE_{\mu}/dx$
- From simulations (uncertain): most likely E_{ν} given E_{μ}
- ► Fit the ratio $\sigma_{\rm obs}/\sigma_{\rm SM}$ 1.30 $^{+0.21}_{-0.19}({\rm stat.})^{+0.39}_{-0.43}({\rm syst.})$
- ► All events grouped in a single energy bin 6–980 TeV

Bonus: Measuring the inelasticity $\langle y \rangle$

- ► Inelasticity in CC ν_{μ} interaction $\nu_{\mu} + N \rightarrow \mu + X$: $E_X = y E_{\nu}$ and $E_{\mu} = (1-y) E_{\nu} \Rightarrow y = (1 + E_{\mu}/E_X)^{-1}$
- ► The value of *y* follows a distribution $d\sigma/dy$
- ► In a HESE starting track:

$$E_{X} = E_{\text{sh}} \text{ (energy of shower)}$$

$$E_{\mu} = E_{\text{tr}} \text{ (energy of track)}$$

$$y = (1 + E_{\text{tr}}/E_{\text{sh}})^{-1}$$

- ▶ New IceCube analysis:
 - ▶ 5 years of starting-track data (2650 tracks)
 - ► Machine learning separates shower from track
 - ▶ Different *y* distributions for ν and $\bar{\nu}$

IceCube, PRD 2019

Bonus: Measuring the inelasticity $\langle y \rangle$

► Inelasticity in CC ν_{μ} interaction $\nu_{\mu} + N \rightarrow \mu + X$:

$$E_X = y E_{\nu} \text{ and } E_{\mu} = (1-y) E_{\nu} \Rightarrow y = (1 + E_{\mu}/E_X)$$

- ▶ The value of *y* follows a distribution $d\sigma/dy$
- ▶ In a HESE starting track:

$$E_X = E_{\rm sh}$$
 (energy of shower)
 $E_{\mu} = E_{\rm tr}$ (energy of track) $y = (1 + E_{\rm tr}/E_{\rm sh})^{-1}$

- ▶ New IceCube analysis:
 - ▶ 5 years of starting-track data (2650 tracks)
 - ▶ Machine learning separates shower from track
 - ▶ Different *y* distributions for ν and $\bar{\nu}$

IceCube, PRD 2019

Two classes of new physics

- ▶ Neutrinos propagate as an incoherent mix of ν_1 , ν_2 , ν_3
- ► Each one has a different flavor content:

- ► Flavor ratios at Earth are the result of their combination
- ▶ New physics may:
 - ▶ Only reweigh the proportion of each v_i reaching Earth (*e.g.*, v decay)
 - ightharpoonup Redefine the propagation states (*e.g.*, Lorentz-invariance violation)

Two classes of new physics

- ▶ Neutrinos propagate as an incoherent mix of ν_1 , ν_2 , ν_3
- ► Each one has a different flavor content:

- ► Flavor ratios at Earth are the result of their combination
- ▶ New physics may:
 - ▶ Only reweigh the proportion of each v_i reaching Earth (*e.g.*, v decay)
 - \triangleright Redefine the propagation states (*e.g.*, Lorentz-invariance violation)

Measuring the neutrino lifetime

Find the value of D so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- Any value of mixing parameters; and
- ► Any flavor ratios at the sources

(Assume equal lifetimes of v_2 , v_3)

MB, Beacom, Murase, *PRD* 2017 Baerwald, **MB**, Winter, *JCAP* 2012

Fraction of v_2 , v_3 remaining at Earth

Find the value of D so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- Any value of mixing parameters; and
- ► Any flavor ratios at the sources

(Assume equal lifetimes of v_2 , v_3)

Fraction of v_2 , v_3 remaining at Earth

Find the value of D so that decay is complete, i.e., $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- ► Any value of mixing parameters; and
- ► Any flavor ratios at the sources

(Assume equal lifetimes of v_2 , v_3)

Fraction of v_2 , v_3 remaining at Earth

Find the value of D so that decay is complete, i.e., $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- ► Any value of mixing parameters; and
- ► Any flavor ratios at the sources

(Assume equal lifetimes of v_2 , v_3)

Fraction of v_2 , v_3 remaining at Earth

Find the value of D so that decay is complete, i.e., $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- ► Any value of mixing parameters; and
- ► Any flavor ratios at the sources

(Assume equal lifetimes of v_2 , v_3)

Fraction of v_2 , v_3 remaining at Earth

Find the value of D so that decay is complete, i.e., $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- ► Any value of mixing parameters; and
- ► Any flavor ratios at the sources

(Assume equal lifetimes of v_2 , v_3)

Fraction of v_2 , v_3 remaining at Earth

MB, Beacom, Murase, PRD 2017

Baerwald, MB, Winter, JCAP 2012

Find the value of D so that decay is complete, i.e., $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- ► Any value of mixing parameters; and
- ► Any flavor ratios at the sources

(Assume equal lifetimes of v_2 , v_3)

Using unitarity to constrain new physics

$$H_{\text{tot}} = H_{\text{std}} + H_{\text{NP}}$$

- ► New mixing angles unconstrained
- ► Use unitarity $(U_{NP}U_{NP}^{\dagger} = 1)$ to bound all possible flavor ratios at Earth
- ► Can be used as prior in new-physics searches in IceCube

Ahlers, **MB**, Mu, *PRD* 2018 See also: Xu, He, Rodejohann, *JCAP* 2014

Side note: Improving flavor-tagging using echoes

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_τ –

Side note: Improving flavor-tagging using echoes

Late-time light (*echoes*) from muon decays and neutron captures can separate

showers made by ν_e and ν_τ –

Side note: Improving flavor-tagging using echoes

Late-time light (*echoes*) from muon decays and neutron captures can separate

showers made by ν_e and ν_τ –

Hadronic vs. electromagnetic showers

Energy dependence of the flavor composition?

Different neutrino production channels accessible at different energies –

- ▶ TP13: $p\gamma$ model, target photons from electron-positron annihilation [Hümmer+, Astropart. Phys. 2010]
- ► Will be difficult to resolve [Kashti, Waxman, PRL 2005; Lipari, Lusignoli, Meloni, PRD 2007]