

Progresses of the Dark Matter Particle Explorer (DAMPE) experiment

Qiang Yuan (袁强)

Purple Mountain Observatory (on behalf of the DAMPE collaboration) Jul. 24 - Aug. 1, 2019, Madison, Wisconsin

The DAMPE collaboration

CHINA

- Purple Mountain Observatory, CAS, Nanjing
- Institute of High Energy Physics, CAS, Beijing
- National Space Science Center, CAS, Beijing
- University of Science and Technology of China, Hefei
- Institute of Modern Physics, CAS, Lanzhou

ITALY

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento
- INFN LNGS and Gran Sasso Science Institute

SWITZERLAND

University of Geneva

Outline

- > Introduction
- > DAMPE instrument
- **➤** On-orbit performance
- > Physical Results
- > Summary

Composition of the Universe QA

Detection of dark matter

Cosmic rays

- > Precision measurements of cosmic ray spectra: cosmic ray origin, acceleration, and propagation
- The spectra above TeV are not well measured due to limited statistics of direct detection experiments

Recent space particle/γ detectors DA

Fermi

CALET

NUCLEON

ISS-CREAM

Dark Matter Particle Explorer (DAMPE)

DAMPE ("Wukong") lanuched on Dec. 17, 2015

Three major scientific goals

→ γ-ray astronomy

Dark matter indirect detection

DAMPE instrument

Instrument design

- > PSD: charge measuresument via dE/dx and ACD for photons
- > STK: track, charge, and photon converter
- > BGO: energy measurement, particle (e-p) identification
- NUD: Particle identification

PSD charge detector

- 2 layers (x,y) of 88.4 cm × 2.8 cm × 1 cm
- \triangleright Active area: 82 cm \times 82 cm
- ➤ Weight: ~103 kg
- Power: ~ 8.5 W

Silicon tracker

Layers X (top)
Layers Y (bottom)

- Detection area: 76 cm x 76 cm
- Total weight: ~154 kg
- Total power consumption: ~ 82W
- Three 1 mm tungsten plates for photon conversion $(0.86 X_0)$

BGO calorimeter

- > Outer envelop: 100 cm x 100 cm x 50 cm
- Detection area: 60 cm x 60 cm
- ➤ Total weight: ~1052 kg
- > Total power consumption: ~ 41.6 W

NUD neutron detector

- $> n + {}^{10}B \rightarrow \alpha + {}^{7}Li + \gamma$
- ➤ 4 plastic scintillators
- > Active area: 60 cm x 60 cm
- ➤ Total weight: ~12 kg
- > Total power: ~ 0.5 W

Particle identification

Energy measurement

BGO calorimeter

308 BGO bars

616 PMTs

- Thick calorimeter (32 X₀): high-resolution
- Two-side readouts
- Three dynode outputs enable a >106 dynamic range

Test beam validation

Astropart. Phys., 95, 6 (2017)

On-orbit performance

See Y. L. Zhang CRD7e

Observation overview

DAMPE 3.5 year counts map

7 full scans of the sky

5M events/day 6.6 billion in total

Detector stability

PSD charge measurement

Species	Charge Res.
P	0.06
Не	0.10
Li	0.14
Be	0.21
В	0.17
С	0.18
N	0.21
0	0.20

STK direction measurement

PSF calibrated with bright gamma-ray sources : ~0.5 degrees @ 5 GeV

DAMPE IRFs for γ-rays

BGO energy calibration

BGO energy linearity

BGO energy linearity

BGO energy linearity

Absolute energy scale

- An energy scale higher by (1.2+/-1.3)% from the geomagnetic cutoff
- Cutoff energy is stable with time (a slight decrease due to solar modulation)

e/p separation

- We use the lateral (SumRMS) and longitudinal (energy ratio in last layer) developments of the showers to discriminate electrons from protons
- For 90% electron efficiency, proton background is ~2% @ TeV, ~5% @ 2 TeV, ~10% @ 5 TeV

Validation of e/p separation

Physical results

γ-ray skymap

γ-ray line searches

γ-ray point sources

Source Type	Number
AGN	100
Pulsar	27
SNR / PWN	9
Binary	2
Globular cluster	1
Unassociated	4
Total	143

- > 143 sources with TS > 20
- > Most are AGNs and pulsars

See X. Li GAD3a

γ-ray pulsars

120 Preliminary

100

SS 80

40

40

20

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Phase

(a) Vela

(b) Geminga

(c) J1709-4229

See M. Munoz GAD2d

(d) Crab

(e) J0007+7303

Total e⁺+e⁻ spectrum

- Three different PID methods give very consistent results on eventby-event level
- Direct detection of a spectral break at ~1 TeV with 6.6σ confidence level
 - Analysis with new data is on-going

Errors of e++e- spectrum

Implication of the spectral softening: discreteness of source distributions?

- Cooling time of TeV electrons ~ Myr, effective propagation range ~ kpc
- Assuming a total SN rate of 0.01 per year, the total number of SNRs within the effective volume and cooling time is O(10)

Spectral structures of nuclei **DAM**

DAMPE proton spectrum

- Confirms the hundreds GeV hardening
- Detecting a softening at ~13 TeV with high significance

Implications: source population(?) Nearby source(?)

DAMPE helium spectrum

Cosmic ray anisotropies

95% UL of dipole amplitude for 1-yr data (> \sim 300 GeV): 6.7 \times 10⁻³

See M. Munoz CRD4e

Solar modulation of e++e-

- Anti-correlation with sunspot numbers
- Monthly variation may be related to occasional solar activities

Possible time delay between sunspot numbers and CR modulation

Electron Forbush decrease

Decreasing behavior of recovery time versus energy

See J. J. Zang CRD2e

DAMPE contributions at ICRC2019

- > H16: Progresses of the Dark Matter Particle Explorer
- CRD2e: Observation of time evolution of cosmic ray electron and positron flux with Dark Matter Particle Explorer
- CRD4e: Anisotropy Searches with DAMPE
- CRD7b: Elemental analysis of Cosmic Ray flux with DAMPE
- > CRD7e: The Status of DAMPE Satellite in Space
- > CRD8g: Measurement of cosmic ray proton spectrum with the Dark Matter Particle Explorer
- > CRD8h: Helium spectrum in the cosmic rays measured by the DAMPE detector
- GAD3a: Recent Gamma ray Results from DAMPE
- GAD2d: Gamma ray Pulsars with DAMPE
- PS1-2: Checking the Reconstructed Energy of the DAMPE Experiment with Geomagnetic Cutoff CR-Nuclei
- > PS1-5: Charge Measurement of Cosmic Ray Nuclei with DAMPE Tiekuang Dong
- PS1-6: Neural Networks for Electron Identification with DAMPE
- PS1-7: TeV—PeV hadronic simulations with DAMPE
- PS1-17: First Look on Fractional Charged Particles in Space Based on DAMPE Orbit Data
- PS1-19: A Method of Alignment for Plastic Scintillator Detector of DAMPE

DAMPE contributions at ICRC2019

- > PS1-36: Measurement of the Cosmic-ray Proton + Helium Spectrum with DAMPE
- > PS1-37: Hadronic cross section validation in the DAMPE experiment
- > PS1-42: The selection and energy validation of heavy ions based on DAMPE orbit data
- > PS1-44: Ultra-heavy cosmic rays measurements with DAMPE
- > PS1-248: Boresight Alignment with DAMPE
- PS1-256: Search for a gamma-ray line feature with DAMPE

Summary

- > DAMPE detector is working extremely well since launch
- Very precise measurements of the e⁺+e⁻ spectrum from 25 GeV to 4.6 TeV have been obtained, showing a spectral break at ~TeV energies and possible new spectral features
- Precise measurements of proton spectrum from 40 GeV to 100 TeV have been obtained, revealing interesting softening features at ~10 TeV
- > More results are coming

Thank You!

Backup

e/p separation at higher energies

For 90% electron efficiency, proton background is \sim 2% @ TeV, \sim 5% @ 2 TeV, \sim 10% @ 5 TeV.

Raw count spectra

Laser experiment

Three-component e⁺e⁻ model

- Primary e- accelerated together with ions (in e.g., supernova remnants)
- Secondary e- and e+ from hadronic interaction of cosmic ray nuclei
- Additional e- and e+ from extra sources (e.g., pulsars, ...)