Study on the 3D anisotropic diffusion and large-scale anisotropy of the galactic cosmic rays

Presenter: Hongbo Hu

Co-author: Wei Liu, Shujie Lin, Yiqing Guo

ICRC2019, Madison, Wisconsin, USA July 28, 2019

Cosmic ray Spectra

Standard Propagation EQ:

Symmetric Symmetric to GC Source Diffusion Convection $\frac{\partial \psi(\vec{r},p,t)}{\partial t} = q(\vec{r},p,t) + \sum_{i} D_{ii} \frac{\partial^{2} \psi}{\partial x_{i}^{2}} - \nabla \cdot (\vec{V}_{c}\psi) + \frac{\partial}{\partial p} p^{2} D_{pp} \frac{\partial}{\partial p} \frac{1}{p^{2}} \psi - \frac{\partial}{\partial p} \left[\dot{p}\psi - \frac{p}{3} (\nabla \cdot V_{c}\psi) \right] - \frac{\psi}{2} - \frac{\psi}{2}$ Secondary production

- Spectra of CRs, ratio between secondary and primary CRs, eg. B/C are well described;
- Makes prediction, eg., anisotropy;

PeV CRs anisotropy in Galactic coordinate

- Standard model
 predicts that the
 anisotropy of GCRs are
 of dipole form, with
 the direction pointing
 to the GC.
- Agree with the observation above 100TeV.

Consistent with the GLOBAL diffusion prediction;
Services as an indication that PeV CRs are galactic origin.

TeV CRs anisotropy in the Galactic coordinates

N. A. Schwadron, et al., 2014, Science

- 1. Below 100 TeV, Dipole does not point to GC, but to the Local ISMF direction
- 2. Indicates that regular magnetic field Is important to the propagation of GCRs

Anisotropic diffusion in regular magnetic field

Under ordered magnetic field \vec{B} , diffusion process is anisotropic and D_{ij} is rank-two symmetric tensor

In a field-aligned coordinate system

$$D_{ij} = \begin{pmatrix} D_{\parallel} & 0 & 0 \\ 0 & D_{\perp} & 0 \\ 0 & 0 & D_{\perp} \end{pmatrix}$$

 D_{\parallel} diffusion coefficient aligned with $ec{B}$

$$D_{\parallel} = D_{0\parallel} \left(rac{\mathcal{R}}{\mathcal{R}_0}
ight)^{\delta_{\parallel}} \qquad \mathcal{R}_0 = 4 \mathrm{GV}$$

 D_{\perp} diffusion coefficient perpendicular to $ec{B}$

$$D_{\perp} = D_{0\perp} \left(\frac{\mathcal{R}}{\mathcal{R}_0}\right)^{\delta_{\perp}} \equiv \varepsilon D_{0\parallel} \left(\frac{\mathcal{R}}{\mathcal{R}_0}\right)^{\delta_{\perp}} \qquad \varepsilon = \frac{D_{0\perp}}{D_{0\parallel}}$$

Off-diagonal terms in the general coordinate system

$$D_{ij} = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{pmatrix}$$

$$D_{ij} \equiv D_{\perp} \delta_{ij} + (D_{\parallel} - D_{\perp}) b_i b_j \qquad b_i = \frac{B_i}{|B|}$$

J. Giacalone and J. R. Jokipii, 1999, ApJ

$$\begin{split} \frac{\partial \psi(\vec{r}, p, t)}{\partial t} &= q(\vec{r}, p, t) + \boxed{\sum_{ij} \frac{\partial}{\partial x_i} \left(\frac{D_{ij}}{\partial x_j} \frac{\partial \psi}{\partial x_j} \right)} - \nabla \cdot (\vec{V}_c \psi) \\ &+ \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left[\dot{p} \psi - \frac{p}{3} (\nabla \cdot V_c \psi) \right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_r} \end{split}$$

diffusion term

Pseudo source solution to off-diagonal diffusion terms

$$\begin{split} &q(\vec{r},p,t) + \nabla \cdot (D\nabla \psi) \\ &= \left[q(\vec{r},p,t) + \sum_{i \neq j} \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial \psi}{\partial x_j} \right) \right] + \sum_i \frac{\partial}{\partial x_i} \left(D_{ii} \frac{\partial \psi}{\partial x_i} \right) \\ &= \left[q(\vec{r},p,t) + q_{\text{pseudo}}(\vec{r},p,t) \right] + \sum_i \frac{\partial}{\partial x_i} \left(D_{ii} \frac{\partial \psi}{\partial x_i} \right) \end{split}$$

qpseudo is called pseudo source term

A Form of GALPROP Equation

New propagation equation becomes

$$\frac{\partial \psi(\vec{r}, p, t)}{\partial t} = q(\vec{r}, p, t) + \mathbf{q}_{pseudo}(\vec{r}, p, t) + \sum_{i} \frac{\partial}{\partial x_{i}} \left(D_{ii} \frac{\partial \psi}{\partial x_{i}} \right)
- \nabla \cdot (\vec{V}_{c} \psi) + \frac{\partial}{\partial p} p^{2} D_{pp} \frac{\partial}{\partial p} \frac{1}{p^{2}} \psi - \frac{\partial}{\partial p} \left[\dot{p} \psi - \frac{p}{3} (\nabla \cdot V_{c} \psi) \right]
- \frac{\psi}{\tau_{f}} - \frac{\psi}{\tau_{r}}.$$

Iteration method

(1) assume $q_{\rm pseudo}^{(0)}=0$, solve propagation equation to obtain distribution $\psi^{(1)}$

(2) calculate $q_{
m pseudo}^{(1)}$ according to $\psi^{(1)}$, then solve propagation equation with $q_{
m pseudo}^{(1)}$ to obtain the new distribution $\psi^{(2)}$

repeat procedure (2) for n times $\mathrm{until}|\psi^{(n+1)}-\psi^{(n)}|$ become small enough

Test by a toy magnetic field model

DRAGON solved a 2D anisotropic propagation problem

C. Evoli, D. Gaggero, et al. 2017, JCAP

$$B_r = 0$$

$$B_{\phi} = B_{0,\phi} \left(1 - \exp\left[-\frac{r}{r_0} \right] \right)$$

$$B_z = B_{0,z} \exp\left[-\frac{r}{r_0}\right] \equiv \varepsilon_B B_{0,\phi} \exp\left[-\frac{r}{r_0}\right]$$

Close to the Galactic center, B_z is dominated

 B_{ϕ} is dominated far away from the Galactic center

from Andrea Vittino's talk @ICRC2017

 D_{\parallel} dominated when $r \ll R_0$

 D_{\perp} dominated when $r \gg R_0$

A Realistic 3D Galactic Magnetic Field Model

Formulae of the Model

disk component

$$B_{\phi}^{\text{disk}}(r,z) = \begin{cases} B_0^{\text{d}} \exp\left(-\frac{|z|}{z_0}\right), & r \leq R_c^{\text{d}} \\ B_0^{\text{disk}}(r,z) = \begin{cases} B_0^{\text{d}} \exp\left(-\frac{(r-r_{\odot})}{R_0} - \frac{|z|}{z_0}\right), & r > R_c^{\text{d}} \end{cases}$$

halo component

$$B_{\phi}^{\text{halo}}(r,z) = B_0^{\text{h}} \left[1 + \left(\frac{|z| - z_0^{\text{h}}}{z_1^{\text{h}}} \right) \right]^{-1}$$
$$\times \frac{r}{R_0^{\text{h}}} \exp\left(1 - \frac{r}{R_0^{\text{h}}} \right)$$

poloidal component

$$B_r^{\text{pol}}(r, z) = B_X(r, z) \exp\left(-\frac{R^{\text{p}}}{R^{\text{X}}}\right) \sin\Theta_X,$$

$$B_z^{\text{pol}}(r, z) = B_X(r, z) \exp\left(-\frac{R^{\text{p}}}{R^{\text{X}}}\right) \cos\Theta_X,$$

R. Jansson and G. R. Farrar, 2012, ApJ

M. S. Pshirkov, P. G. Tinyakov et al, 2011, ApJ

Result of B/C ratio

Nearby the solar system, perpendicular diffusion is dominated

 δ_{\perp} is determined by the B/C ratio(L is fixed to 4 kpc)

 δ_{\parallel} is fixed to 0.3

When ε drops, both $D_{0\parallel}$ accordingly increases

	ε	$D_{0\parallel}~\mathrm{[cm^2/s]}$	δ_{\parallel}	δ_{\perp}	η	$ u_1 $	$\mathcal{R}_0 \; [\mathrm{GV}]$	$ u_2 $
Set 1	1.0	5.6×10^{28}	0.3	0.5	0.5	2.44	350	2.34
Set 2	0.1	3.6×10^{29}	0.3	0.5	0.5	2.44	350	2.34
Set 3	0.01	1.3×10^{30}	0.3	0.48	0.5	2.44	350	2.34

Result of proton spectrum

Summary

A pseudo source method is proposed to solve the 3D anisotropic diffusion equation with existing GALPROP package.

B/C ratio and proton spectrum under a realistic magnetic field model are reproduced with reasonable parameters.

CR Anisotropy will be studied with magnetic field model capable representing local ISMF in the future.

Thank you for your attention