Observing Supernova Neutrinos to Late Times

Shirley Li
SLAC

ICRC, July 2019
Timescale of a SN

10^{47} 10^{48} 10^{49} 10^{50} 10^{51} 10^{52} 10^{53}

$L_{\bar{\nu}_e}$ [erg / s]

pre-SN

Main signal

$t_{\text{post-bounce}}$ [s]

Shirley Li (SLAC)
Timescale of a SN

Figure credit: R.J. Hall

Shirley Li (SLAC)
Timescale of a SN

$L_{\bar{\nu}_e}$ [erg / s]

$t_{\text{post-bounce}}$ [s]

pre-SN | Main signal | Late time

Figure credit: R.J. Hall
Timescale of a SN

Figure credit: R.J. Hall
First input -- simulation

Luke Roberts

Blondin et al., 2003
Late-time neutrinos are interesting & robust!

1/t behavior surprising
Connects SN and NS
Moderate mixing effect

Late-time neutrinos are interesting & robust!

Shirley Li (SLAC)
Late-time neutrinos

Neutrino luminosity and energy

- 1/t behavior surprising
- Connects SN and NS
- Moderate mixing effect

Late-time neutrinos are interesting & robust!

Shirley Li (SLAC)
Supernova neutrino detection

Large cross sections

\[\bar{\nu}_e + p \rightarrow e^+ + n \]

\[\nu_e + ^{40}\text{Ar} \rightarrow e^- + ^{40}\text{K}^* \]

\[\nu_x + p \rightarrow \nu_x + p \]

Multi-10 kton

Super-K

DUNE

JUNO

Shirley Li (SLAC)
Supernova neutrino detection

Large cross sections

\[\bar{\nu}_e + p \rightarrow e^+ + n \]

Super-K

\[\nu_e + ^{40}\text{Ar} \rightarrow e^- + ^{40}\text{K}^* \]

DUNE

\[\nu_x + p \rightarrow \nu_x + p \]

JUNO

Multi-10 kton

Shirley Li (SLAC)
\(\bar{\nu}_e + p \rightarrow e^+ + n \)

- **Inputs:**
 - 10 kpc SN
 - 22.5 kton
 - 3.5 MeV threshold

Plenty of events in Super-K!

Li, Roberts & Beacom, in prep

Shirley Li (SLAC)
$\bar{\nu}_e$ energy spectrum

$\bar{\nu}_e + p \rightarrow e^+ + n$

- $E_{e^+} = E_{\bar{\nu}_e} - 1.3 \text{ MeV}$
- --- known detection threshold

Easily reconstruct neutrino spectrum

Li, Roberts & Beacom, in prep

Shirley Li (SLAC)
Alternative outcome -- BH

Different mechanisms for BH formation

BH may form at late times

Case 1: PNS Cooling
Case 2: Failed SN
Case 3: Metastable PNS

Remnant: BH
Remnant: NS

Neutrino luminosity L_ν [erg / s]
$t_{\text{post-bounce}}$ [s]

Li, Roberts & Beacom, in prep

Shirley Li (SLAC)
Detecting BH formation

Detection significance of BH formation

We can detect BH formation at late times

Li, Roberts & Beacom, in prep
Conclusions

Shirley Li (SLAC)
Thank you!
Back up
\(\nu_e \) signal rate

\[\nu_e + ^{40}\text{Ar} \rightarrow e^- + ^{40}\text{K}^* \]

- Inputs:
 - 10 kpc SN
 - 40 kton
 - 5 MeV threshold

Plenty of events to late time in DUNE!

Shirley Li (SLAC)
\(\nu_e + ^{40}\text{Ar} \rightarrow e^- + ^{40}\text{K}^* \)

- \(E_e = E_{\nu_e} - 5.8 \text{ MeV} \)
- **unknown** detection threshold

Detection threshold needs to reach \(\sim 5 \text{ MeV} \)

Shirley Li (SLAC)

Li, Roberts & Beacom, in prep
\(\nu_x \) signal rate

\[\nu_x + p \rightarrow \nu_x + p \]

Non-negligible events at late time

\(\nu_x \) in JUNO

Event count per bin

\(t_{\text{post-bounce}} \) [s]

Main signal

10s events

\(\nu_x \) in JUNO

Inputs:

- 10 kpc SN
- 22.5 kton
- 0.1, 0.2 MeV threshold

Li, Roberts & Beacom, in prep

Shirley Li (SLAC)
ν_x energy spectrum

$\nu_x + p \rightarrow \nu_x + p$

- $E_{\text{det}} \ll E_{\nu_x}$
- ___ unknown
detection threshold

Detection threshold is crucial

Shirley Li (SLAC)