

36th International Cosmic Ray Conf., Madison, WI, July 25 2019

Acceleration of Anomalous Cosmic Rays: Solar Cycle Variations

József Kóta University of Arizona, LPL

Thanks to J.R. Jokipii, J. Giacalone NASA LWS NNH15ZDA0001N

Prelude: Motivation

- The disparity between galactic and anomalous cosmic rays during the past and current solar minima offers new indicate that ACRs were less efficiently accelerated than in previous cycles.
- This could happen for a number of reasons: steepening of the source spectrum due to faster diffusion (Moraal & Stoker, 2010); changes in seed particles; and/or shock strength & position, etc
- We do not aim for quantitative fit yet, shall focuses on (1) tilt angle and (2) decreasing electrostatic potential (Jokipii 1982, 1996)

GCRs at record high level in 2009 (Mewaldt et al)

GCRs surge as ...

270-450 MeV/n Iron at ACE

Black: prediction from earlier cycle

GCR increase is the result of : decreasing B & decreasing tilt?

ACRs in the last 3 solar cycles (from Ace News) HCS flattens

CR surge

ACRs did not surpass their 1987 level

Last Unusual Solar Minimum

- Sunspot number low
- Magnetic field weakest ever recorded
- Solar Wind pressure low
- Tilt angle remained moderate until 2008 did not flatten as in other minima
- GCRs at record high level!
 Neutron Monitors, ACE Iron
- ACRs track GCRs but did not surpass previous levels
- Implication: ACR source intensity was lower at TS?
- Spectrum may have steepened (Moraal, Leske, Jokipii)

What happens next?

HCS tilt from Stanford

Stanford HCSs Tilt 80 60 Tilt(degree) 20 2000 1970 1980 1990 2010 2020 Time [Year]

Oulu Neutron Monitor (Usoskin)

Weak modulation in last solar Max High A>O GCR intensities now

Faster diffusion = softer spectrum (Moraal 2010)

Doubling the diff.coeffs, κ

Weaker shock (from 3 to 2.5)

ACRs vs GCRs: Drift & injection

High energy ACRs are injected at:

- Equator for A>0
 - PoleFor A<0

Energy gain is limited by the Electrostatic potential (Jokipii, 1996)

ACRs drift along the shock when accelerate

ACR O+ Changing B only (k unchanged)

- Φ i.e potential of the VxB electric field between the Pole and equator is decided by the total iopen magnetic flux (independent of V)
- The rollover energy of ACRs is decided by the ACR charge times Φ
- Weaker field results in lower rollover energy and lower ACR flux at earth

A<0: weaker B cutoff shifts to lower energy, not for A>0

'Hoop' model of Parker Spiral Field Solve Parker's equation in 2-D + energy using ad-hoc parameters

26-day rotation + radial solar wind = tightly wound spiral field

CR transport beyond 10 AU is mostly across the spiral Substitute spiral with hoops: azimuthal symmetry The waviness of HCS results in **time-variations**

Drifts in the Heliosheath: two models of heliotail

Conventional model elongated tail

Field lines are stretched & sectors are compressed New mode of GCR transport (Florinski)

Croissant (Opher & Drake) toymodel (Drake et al, 2015)

Less distorted field structure

Simulations: Modulation of GCRs

Changing tilt only (70-0-70):
GCRs insensitive to high tilt,
Peaks when HCS flattens

Changing B and tilt:
Qualitative similarity with
observations

ACRs: Simulation with 10 degree tilt

Changing the tilt angle only

!! Bump appears only if HCS is flat for a long time

Summary

- Last unusual solar Minimum offers unique possibilities to gain new insight into the modulation mechanisms
- GCRs are in qualitative agreement with expectations and simulations
- In addition to other effects, ACR source intensity at TS may be lower because of
- (1) Reluctant flattening of HCS
- (2) Decrease of total magnetic flux of the Sun, that gives smaller Pole-Equator potential
- Work in progress, trying to put pieces togethet

Concept/Approach

 "Make everything as simple as possible, but not simpler"

> Make 2D model but Preserve waviness of HCS

Simulations in a "hoop" model

Solar Min A>0

Solar Max.

Solar Min. A<0

Pole-to-Equator Potential from VxB is $\Omega/(2\pi c)$ *open magnetic flux

A. 7-8 Years around Sunsport Minimum

Frozen-in Corotating Magnetic Field, B:

$$\mathbf{B} = \frac{B_0(\theta)}{(n_0 V_0)} n \left(\mathbf{V} - \Omega \times \mathbf{r} \right)$$

Electric field, $B \times V$:

$$\mathbf{B} \times \mathbf{V} = (\Omega \times \mathbf{r}) \times \mathbf{B}$$

Pole-to-Equator Electrostatic Potential, Φ

$$\Phi = rac{\Omega}{2mic} \int_0^{\pi/2} \mathbf{B} d\mathbf{S}$$

is given by the total hemispherical magnetic flux

 $\Phi = \Omega/(2\pi C)$ *magnetic flux in one hemisphere

ACRs 10 degree tilt

A<0

A>0

Spherical model B and S

Steepening ACR Source Spectrum at TS?

Solar Max: Harder

Solar Min: Softer

Plane shock

• Spherical (cooling):
$$\gamma = -\frac{3V_1}{\Delta V} \left(1 + 2\frac{\kappa_1}{RV_1} \frac{V_2}{V_1}\right)$$

Escape:

$$\gamma = -\frac{3V_1}{\Delta V} \left(1 + 2\frac{V_2}{V_1} \frac{Q}{1 - Q} \right)$$

$$Q = exp \Big(- \int_{R_{\rm s}}^{R_{\rm 2}} \frac{V}{\kappa dr} \Big)$$