# **Observations of GRBs: The EW connection**

# Elisabetta Bissaldi

\*Politecnico & INFN Bari elisabetta.bissaldi@ba.infn.it



Outline

### 1. Introduction: GRBs in the **multi-wavelength** context

- 2. The GW GRB connection
- 3. Start of the GW/EM multi-messenger era
  - o GW150914
  - o GW170817 / GRB 170817A
- 4. Current status and future prospects

Multi-Messenger Observations of GRBs: The GW connection

#### Elisabetta Bissaldi\*

PoS

Dipartimento Interateneo di Fisica, Politecnico di Bari, Via G. Amendola 126, 70125 Bari, Italy Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Bari, Via E. Orabona 4, 70125 Bari, Italy E-mail: elisabetta.bissaldi@ba.infn.it

Two years ago, the astronomical community witnessed a historical breakthrough observation: the

Two years ago, the astronomical community witnessed a historical breakthrough observation: the detection of a short Gamma-Ray Burst (GRB) by gamma-ray instruments in coincidence with the detection of a Gravitation Wave (GW) signal produced by the coalescence of two binary neutron stars. This joint GRB-GW observation paved the way to a new chapter in modern astrophysics: the "Multi-Messenger" era. In this contribution, I will review the main results by gamma-ray experiments obtained from 2015 to 2017 during the first two observational runs of the LIGO-Virgo experiments (O1/O2), and highlight strategies and status during the current run (O3) which will cover a 1-year period starting April 2019. Finally, I will focus on future prospects for gammaray missions dedicated to GW counterpart studies.

36th International Cosmic Ray Conference -ICRC2019-July 24th - August 1st, 2019 Madison, WI, U.S.A.

\*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

http://pos.sissa.it/





PROCEEDINGS

OF SCIEN

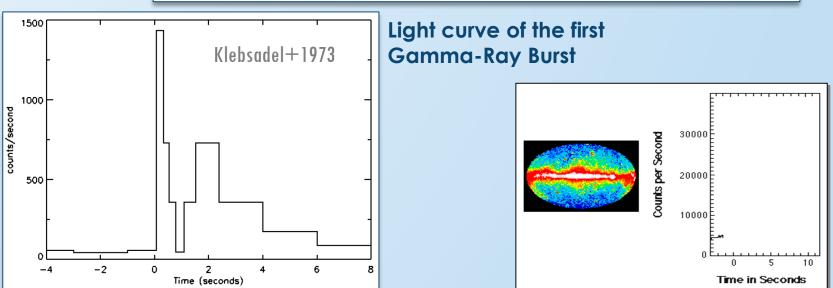
# Gamma-Ray Bursts



### → The keV emission kicked off the GRB show in the '70s!

### VELA-5B satellite (1969) in low earth orbit




### THE ASTROPHYSICAL JOURNAL, 182:L85–L88, 1973 June 1 OBSERVATIONS OF GAMMA-RAY BURSTS OF COSMIC ORIGIN

RAY W. KLEBESADEL, IAN B. STRONG, AND ROY A. OLSON

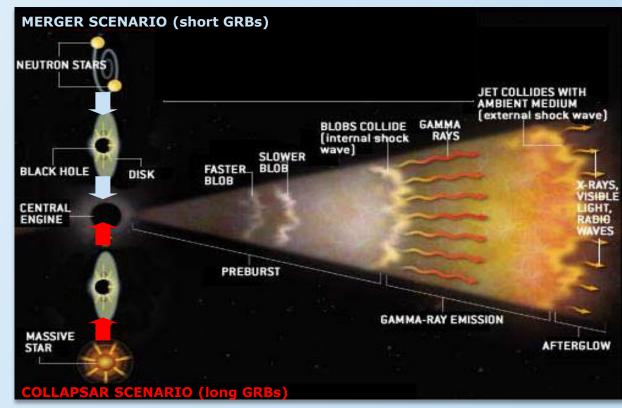
University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico Received 1973 March 16; revised 1973 April 2

### ABSTRACT

Sixteen short bursts of photons in the energy range 0.2–1.5 MeV have been observed between 1969 July and 1972 July using widely separated spacecraft. Burst durations ranged from less than 0.1 s to  $\sim 30$  s, and time-integrated flux densities from  $\sim 10^{-5}$  ergs cm<sup>-2</sup> to  $\sim 2 \times 10^{-4}$  ergs cm<sup>-2</sup> in the energy range given. Significant time structure within bursts was observed. Directional information eliminates the Earth and Sun as sources.






#### ICRC • Madison (WI) • 26 July 2019

## Gamma-Ray Bursts

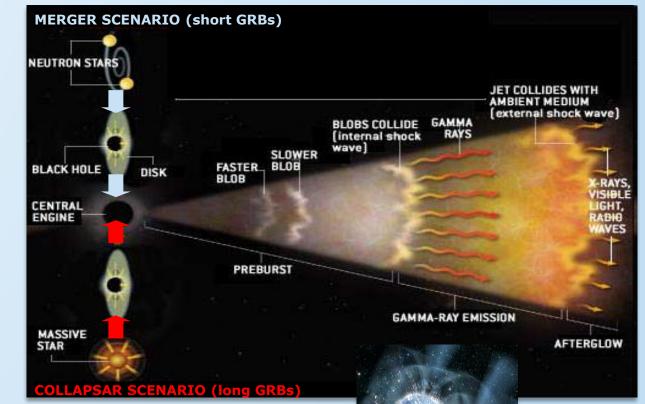
- $\rightarrow$  The keV emission kicked off the GRB show in the '70s!
- What we know now: Optical
  - GRBs are cosmological
  - Radio/ GeV GRBs have large bulk Lorentz factors 2.
  - Optical/ 2 emission phases: 3. GeV Prompt and afterglow
  - kev/Mev Long and short GRBs 4.
  - Spikes have same durations 5.
  - Supernova connection optical 6.

E. Bissaldi

- X-ray/keV Common behaviors and trends 7.
  - «Pillars of knowledge» [Ghisellini 2010]






# Gamma-Ray Bursts

 $\rightarrow$  The keV emission kicked off the GRB show in the '70s!

- What we know now: Optical
  - GRBs are cosmological
  - Radio/ GeV GRBs have large bulk Lorentz factors 2.
  - Optical/ 3. 2 emission phases: GeV Prompt and afterglow
  - keV/MeV Long and short GRBs 4.
  - Spikes have same durations 5.
  - Supernova connection Optical 6.

F. Bissaldi

- X-ray/keV Common behaviors and trends 7
  - «Pillars of knowledge» [Ghisellini 2010]

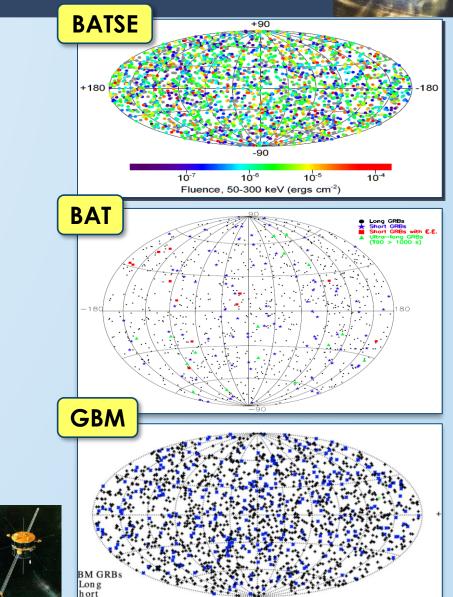


Multi-Wavelength has always been the key! Synergy between instruments (and community!) is crucial

# Gamma-Ray Bursts

- → Unveiling the GRB phenomenon still represents a large field of research
- Multi-wavelength/multi-messenger observations crucial to answer many open questions
  - What is the physics behind?
    - **Prompt**: mechanism, jet properties, central engine
    - **Early afterglow**: mechanism (plateau phase), particle acceleration, B field generation
  - o <u>Tools to probe the Universe</u>
    - Cosmological relations
    - Extragalactic background light (deeper than AGN)
  - o <u>Tests of UHECR origin, fundamental physics</u>
    - Signatures of accelerated hadrons
    - Lorentz invariance violation

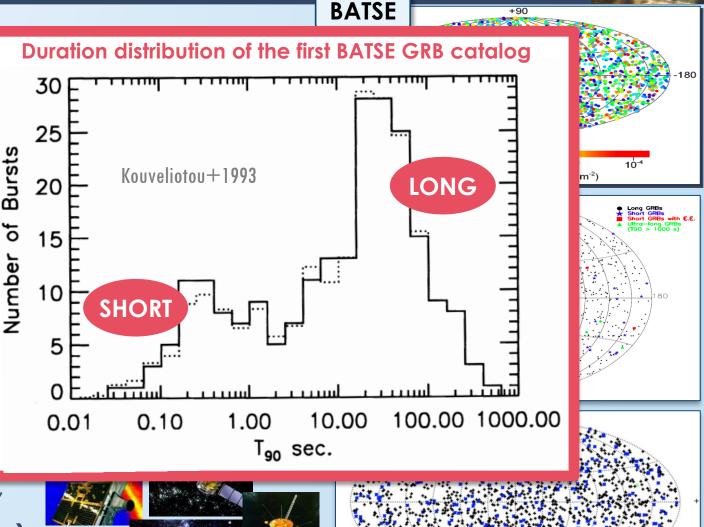



MAAAS





- Past and present observations
  - BATSE [1991–2000; 20–2000 keV] 2704 GRBs (~300 GRBs/yr)
  - BeppoSAX [1996–2003; 40–700 keV] 1082 GRBs (~180 GRBs/yr)
  - Swift-BAT [since 2004; 15–150 keV] ~1300 GRBs (~100 GRBs/yr)
  - Fermi-GBM [since 2008; 8 keV-40MeV]
     ~2630 GRBs (~240 GRBs/yr)
  - Other Missions: HETE-2, INTEGRAL, Konus, Suzaku, AGILE, MAXI-GSC, Astrosat-CZTI, Insight-HXMT, CALET-GRBM (~150 GRBs/yr)






neasured duration

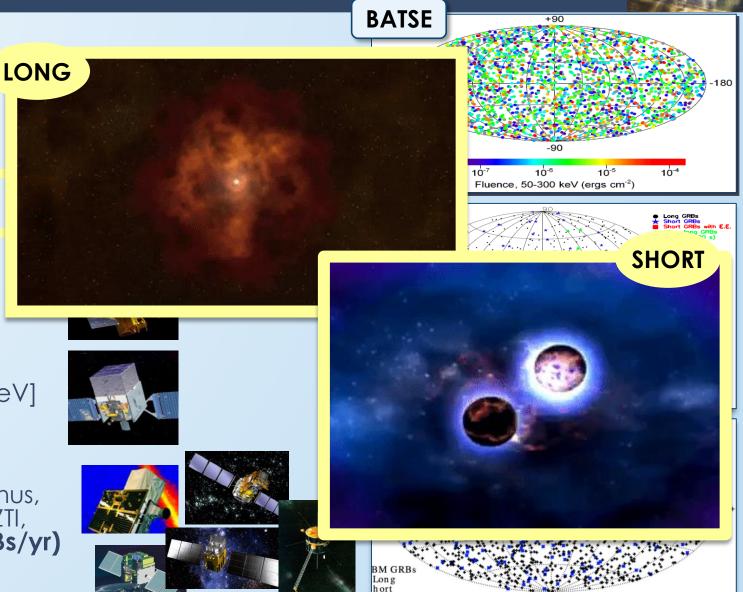


- GRB Classification observations
   BATSE [1991-2000; 20-2000 keV] 2704 GRBs (~300 GRBs/yr)
- BeppoSAX [1996–2003; 40–700 keV] 1082 GRBs (~180 GRBs/yr)
- Swift-BAT [since 2004; 15–150 keV] ~1300 GRBs (~100 GRBs/yr)
- Fermi-GBM [since 2008; 8 keV-40MeV ~2600 GRBs (~240 GRBs/yr)
- Other Missions: HETE-2, INTEGRAL, Konus, Suzaku, AGILE, MAXI-GSC, Astrosat-CZTI, Insight-HXMT, CALET-GRBM (~150 GRBs/yr)



hort

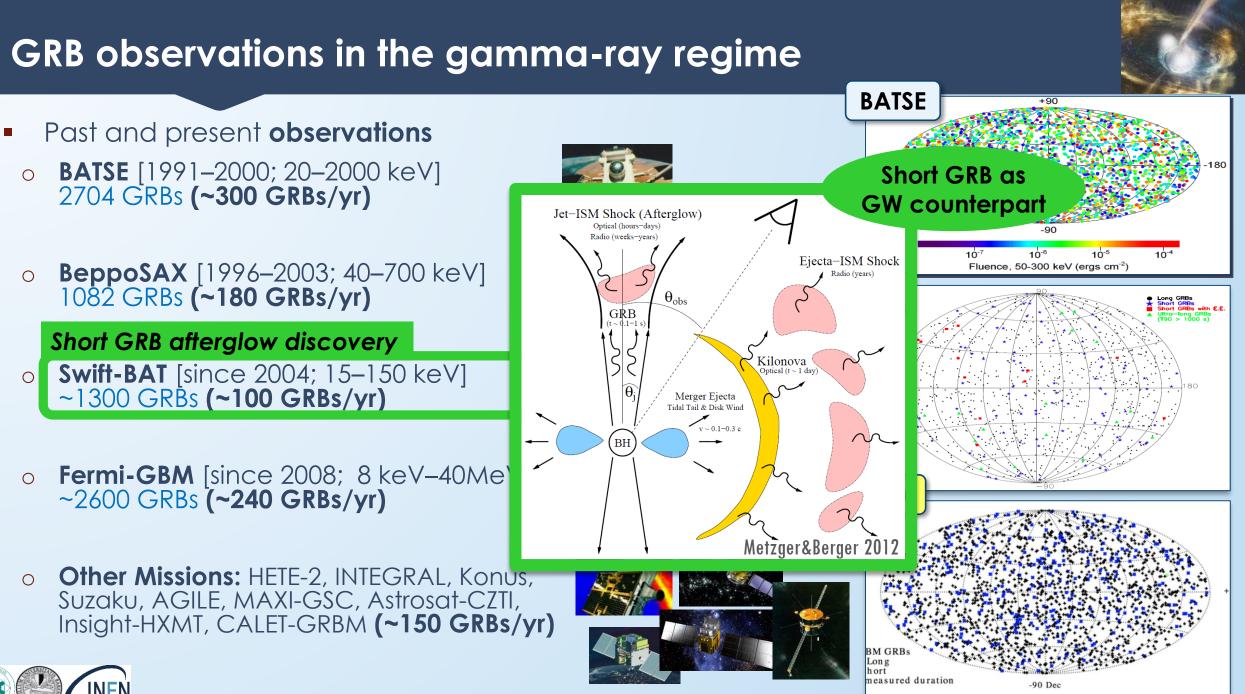
neasured duration




ICRC • Madison (WI) • 26 July 2019

- Past and present observations
  - BATSE [1991-2000; 20-2000 keV] 2704 GRBs (~300 GRBs/yr)

Afterglow discovery


- BeppoSAX [1996–2003; 40–700 keV] 1082 GRBs (~180 GRBs/yr)
- Swift-BAT [since 2004; 15–150 keV] ~1300 GRBs (~100 GRBs/yr)
- Fermi-GBM [since 2008; 8 keV-40MeV]
   ~2600 GRBs (~240 GRBs/yr)
- Other Missions: HETE-2, INTEGRAL, Konus, Suzaku, AGILE, MAXI-GSC, Astrosat-CZTI, Insight-HXMT, CALET-GRBM (~150 GRBs/yr)

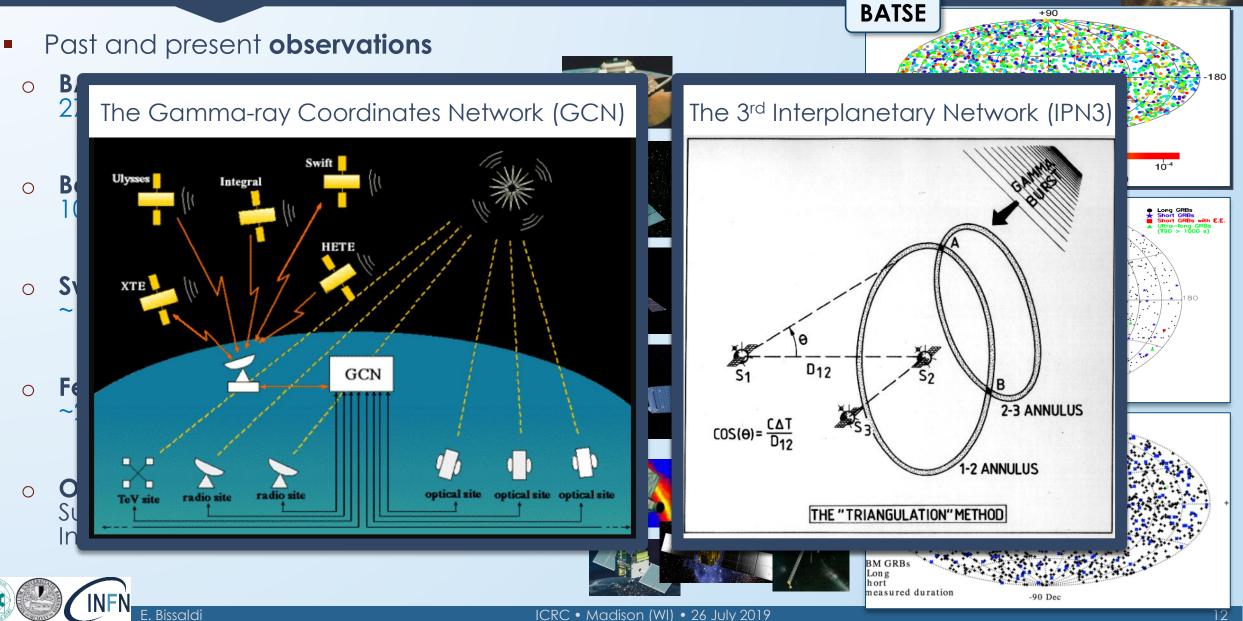


neasured duration

-90 Dec






ICRC • Madison (WI) • 26 July 2019

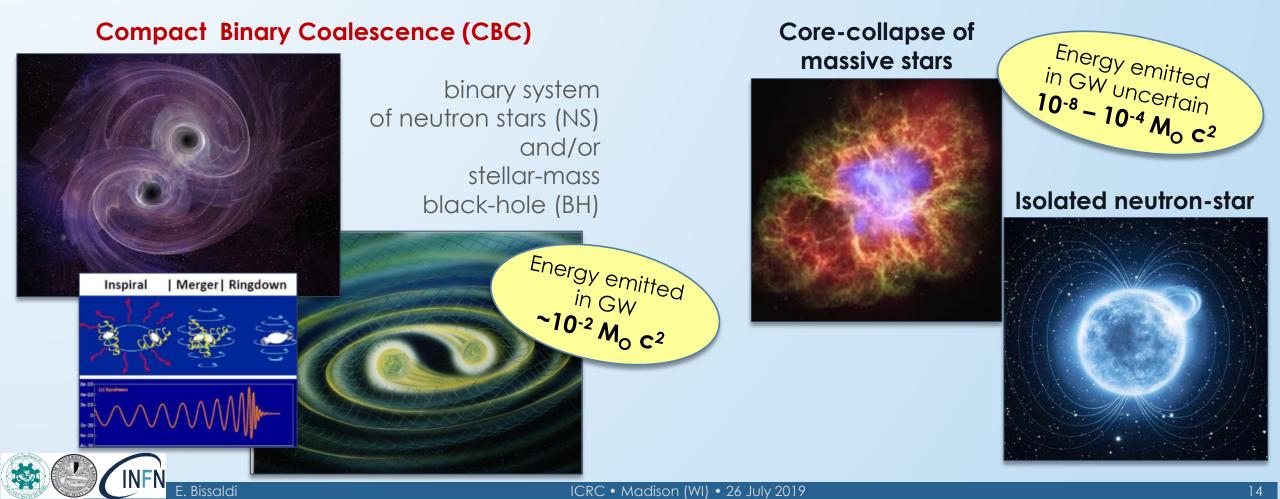
Bissaldi

Bissaldi

**BATSE** Past and present observations **BATSE** [1991–2000; 20–2000 keV] Ο Short GRB rates 2704 GRBs (~300 GRBs/yr) ~40 yr<sup>-1</sup> (trig) ~80 yr<sup>-1</sup> (subthr) **BeppoSAX** [1996–2003; 40–700 keV] 1082 GRBs (~180 GRBs/yr) GRB 170112A Ο 0.025 BAT (15-350 keV) Kocevski+2018 T100 0.020 0.015 0.010 -0.005-0.010 **Swift-BAT** [since 2004; 15–150 keV] 8000 GBM (12-980 keV) Max SNR 7500 ~1300 GRBs (~100 GRBs/yr) Most prolific short GRB detector 8.192 <del>ر</del>م 4.096 o Fermi-GBM [since 2008; 8 keV-40MeV] 2.048 1.024 ~2600 GRBs (~240 GRBs/yr) 0.256 0.128 Time (s) - 505879325.113 **Other Missions:** HETE-2, INTEGRAL, Konus, 0 Suzaku, AGILE, MAXI-GSC, Astrosat-CZTI, Insight-HXMT, CALET-GRBM (~150 GRBs/yr) hort neasured duration -90 Dec

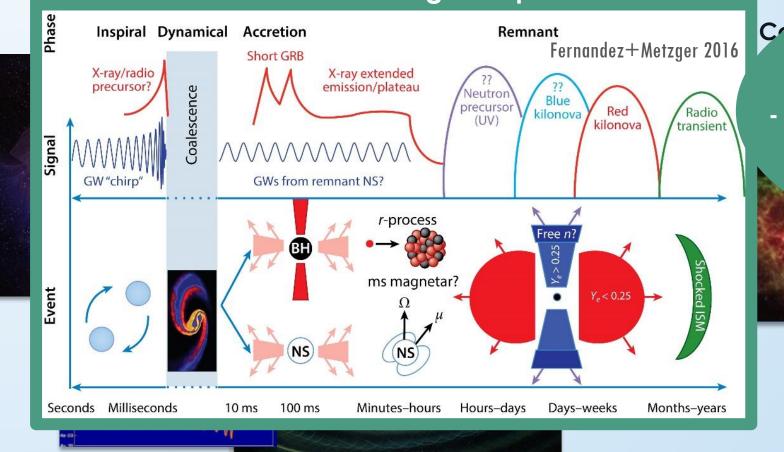





## A new window into the Universe

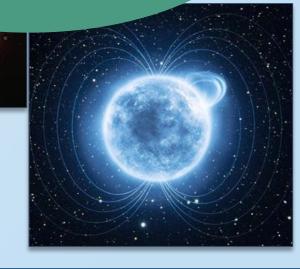





# Expected «transient» GW sources by LIGO/Virgo

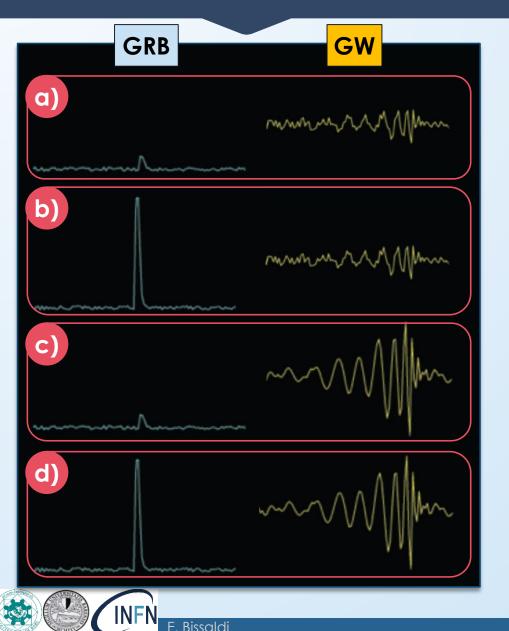
 "Transient GW signal": signal with duration in the detector sensitive band significantly shorter than the observation time and that cannot be re-observed




# Expected «transient» GW sources by LIGO/Virgo

 "Transient GW signal": signal with duration in the detector sensitive band significantly shorter than the observation time and that cannot be re-observed BNS and NSBH – A global picture

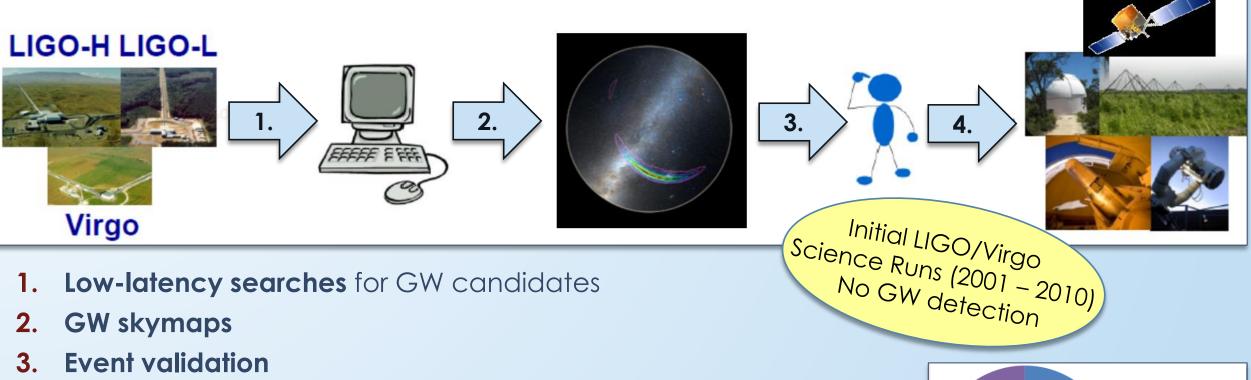



E. Bissaldi

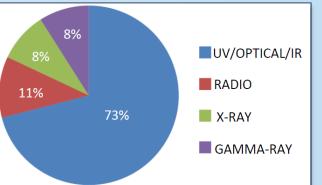
Request for network of **multiwavelength observatories** - covering **huge regions of the sky** - repeating observations over **different timescales** 



\_n-star


# The path towards joint GW-GRB detections



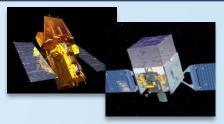

### Possible observing scenarios

- a) Subthreshold **GRB** + subthreshold **GW** signal
- b) Triggered **GRB** + subthreshold **GW** signal
- c) Subthreshold **GRB** + triggered **GW** signal
- d) Triggered GRB + triggered GW
- → In all cases, the presence of a **coincident** signal **raises the significance** of the signal **being real** in the other instrument
- A confident gamma-ray signal allowing a fainter GW signal pushes the LV detection distance limit further, in turn increasing the event rate by a factor of distance cubed

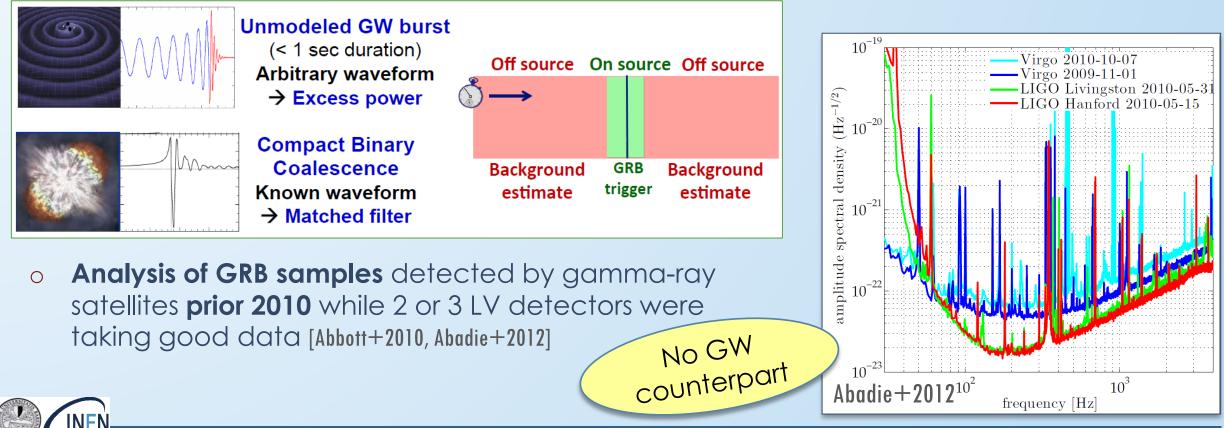
# GRB/GW Observing scenarios: 1. GW signal $\rightarrow$ GRB searches



- Low SNR signals in the first LV runs localized into regions of tens to hundreds of sq. degrees, possibly in several disconnected patches
   Necessity of wide FOV EM telescopes
- 4. EM follow-ups →Initially: GW triggers promptly shared only with partners having signed an MoU with LVC (>150 instruments)





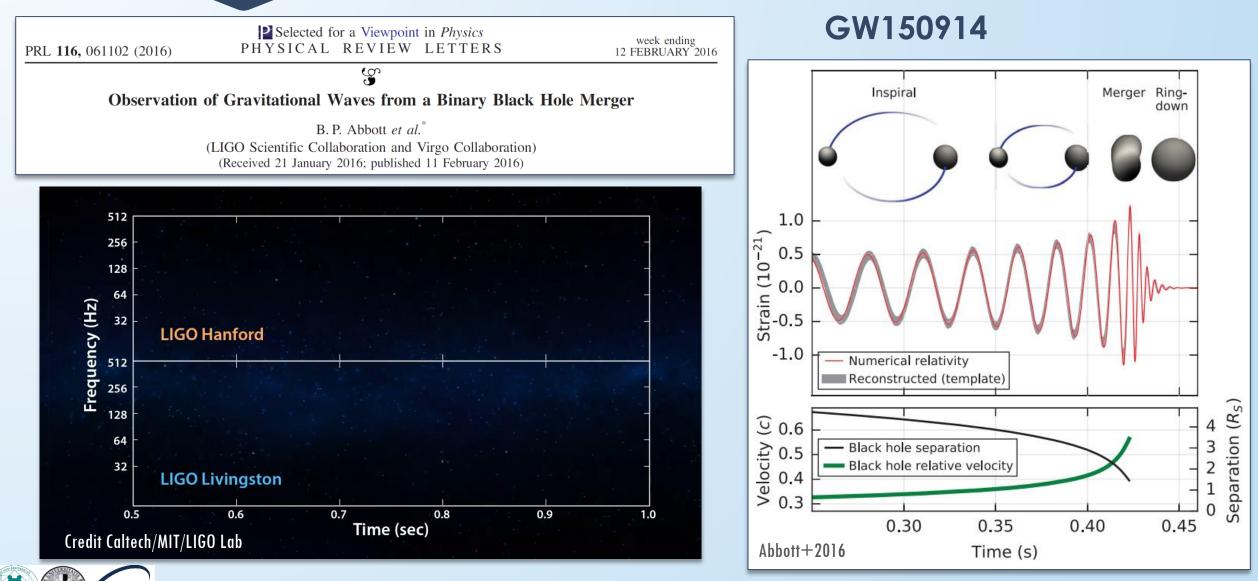


# GRB/GW Observing scenarios: 2. GRB trigger $\rightarrow$ GW searches

- GRB prompt emission → "Triggered" GW search
  - Known **GRB event time** and **sky position**:

E. Bissaldi



Reduction in search parameter space + Gain in search sensitivity




# The beginning of the GW Era!

INFN

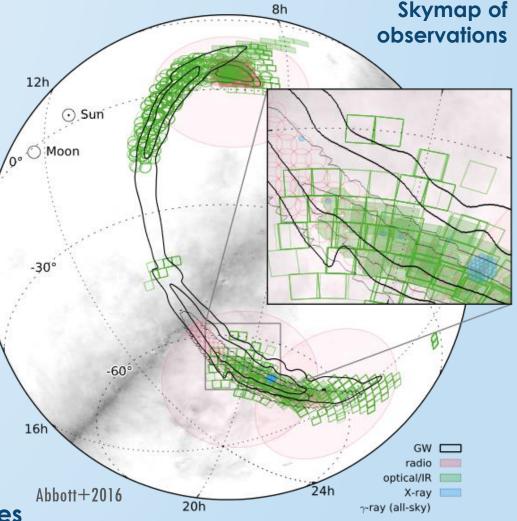
E. Bissaldi





### ICRC • Madison (WI) • 26 July 2019

# The EM follow-up of GW150914

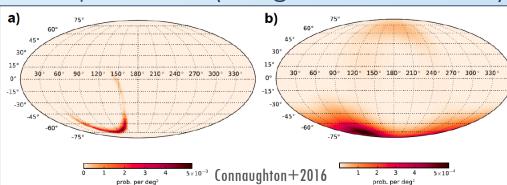

- No coincident triggers from space-based observatories → Offline searches
- Follow-up observations reported by 25 teams via private GCN circulars: <u>NO counterpart detected!</u>

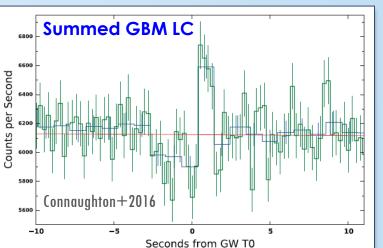
| Initial GW<br>Burst Recovery                                    | Initial<br>GCN Circular                 |                 |                 |                 | d GCN Circular<br>as BBH candidate)                          | Final<br>sky map   |
|-----------------------------------------------------------------|-----------------------------------------|-----------------|-----------------|-----------------|--------------------------------------------------------------|--------------------|
| <i>Fermi</i> GBM, LAT, MAXI,<br>IPN, <i>INTEGRAL</i> (archival) | Swift<br>XRT                            | Swift<br>XRT    |                 |                 |                                                              | Fermi LAT,<br>MAXI |
| BOOTES-3 MASTER                                                 | Swift UVOT, SkyMa<br>Pan-STARRS1, KWFC, |                 |                 |                 | iPTF, <b>Keck</b> , Pan-STARRS1<br>y, <b>PESSTO</b> , UH VST | TURUS              |
|                                                                 |                                         | MWA             | ASKAP,<br>LOFAR | ASKAP,<br>MWA   | VLA,<br>LOFAR                                                | VLA,<br>LOFAR VLA  |
|                                                                 |                                         |                 |                 |                 |                                                              |                    |
| Abbott+2016                                                     | 10 <sup>0</sup>                         | $t - t_{\rm m}$ | erger (days)    | 10 <sup>1</sup> |                                                              | 10 <sup>2</sup>    |

- Event nature (BBH merger) → Little expectation of a detectable EM signature
- But: <u>Milestone achieved</u>! First broadband EM counterpart search campaign!

E. Bissaldi

- Proving broad capabilities of the transient
  - astronomy community and their observing strategies






# The transient "GW150914-GBM"

- Fermi-GBM "Targeted" search around GW150914:
  - Best candidate: Hard transient <u>0.4 s after GW trigger</u>
    - $\rightarrow$  Association significance: 2.9  $\sigma$
  - Classified as short GRB
    - Spectral parameters **average** for short GRBs but fluence **weaker than average** for short GRBs
  - Localization: source direction underneath the spacecraft (b), but consistent with LIGO map (b)
- Association with GW150914 largely debated:
  - o Lack of corroboration by other experiments (Integral, AGILE, etc...)
  - Nature of the LIGO event being BBH merger

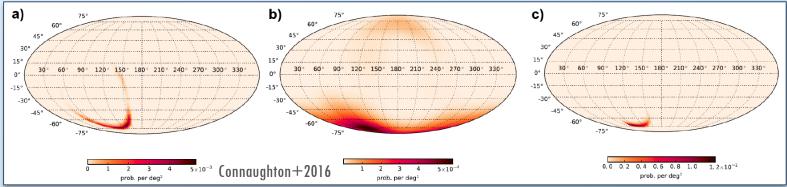






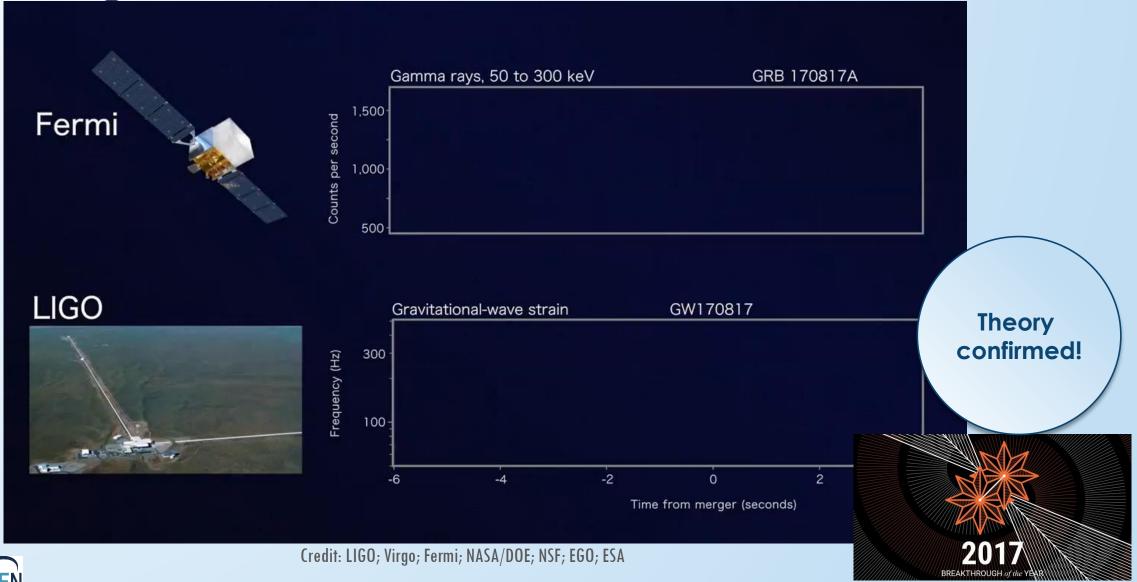


# The transient "GW150914-GBM"



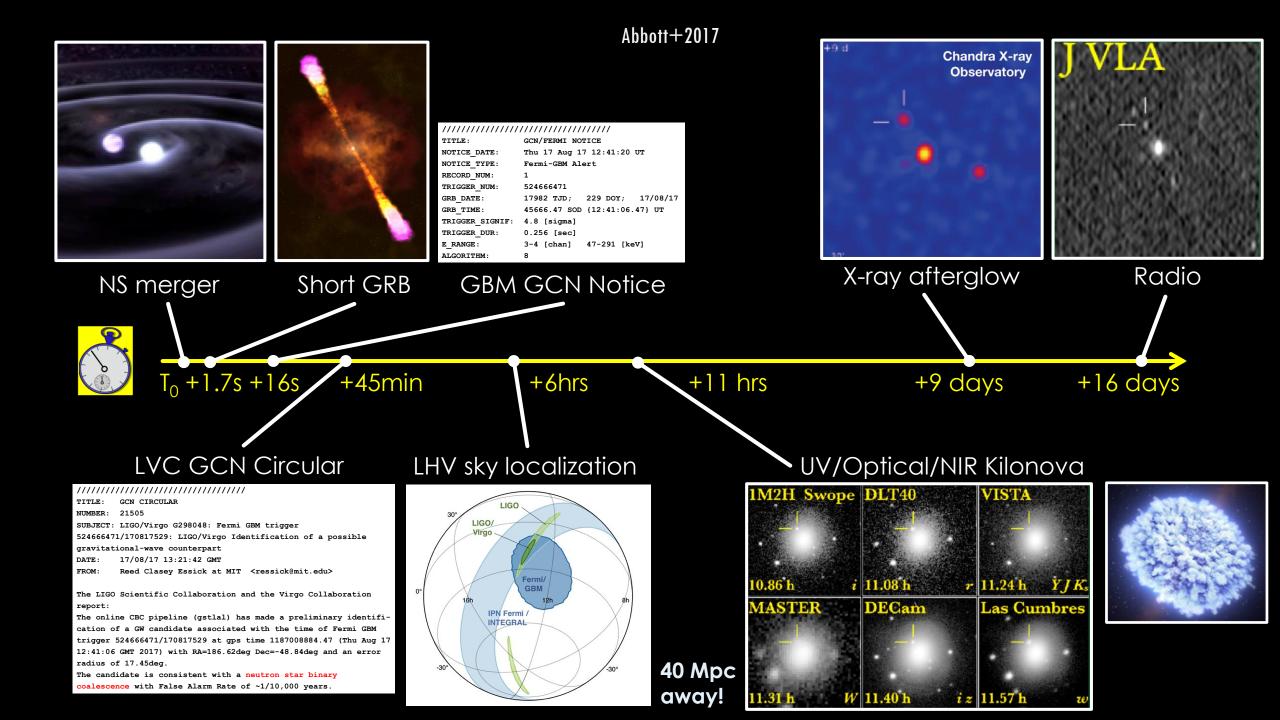

**Summed GBM LC** 

Fermi-GBM proved to be **an ideal partner** 


in the search for EM signals of GW triggers

- Fermi-GBM "Targeted" search around GW15(
  - Best candidate: Hard transient 0.4 s after GW
    - $\rightarrow$  Association significance: 2.9  $\sigma$
  - Classified as short GRB 0
- → Even a large uncertainty region provided by GBM would help shrinking the LV localization by ~2/3 (c) Spectral parameters **average** for short GRBs • but fluence weaker than average for short GRBs
  - Localization: source direction underneath the spacecraft (b), but consistent with LIGO map (b)
- Association with GW150914 largely debated:
  - Lack of corroboration by other experiments (Integral, AGILE, etc...) Ο
  - Nature of the LIGO event  $\bigcirc$ being BBH merger






# August 17, 2017: A historic date!





ICRC • Madison (WI) • 26 July 2019



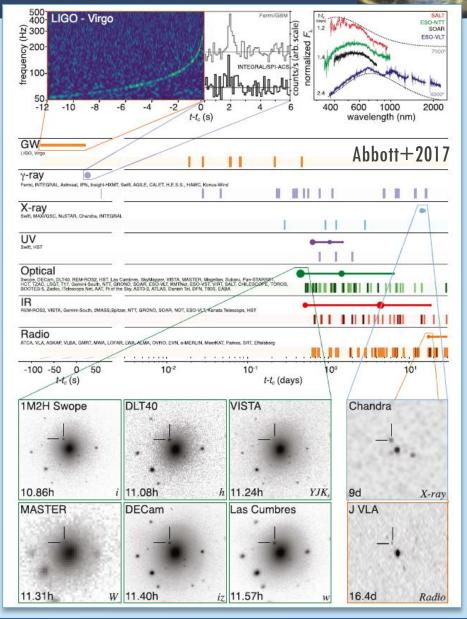
# The first Multi-Messenger paper!

https://doi.org/10.3847/2041-8213/aa91c9

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L12 (59pp), 2017 October 20 © 2017. The American Astronomical Society. All rights reserved. OPEN ACCESS

#### Multi-messenger Observations of a Binary Neutron Star Merger

LIGO Scientific Collaboration and Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-Hxmt Collaboration, ANTAES Collaboration, The Swift Collaboration, AGLE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program), AST3, and CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWITH, JAGWAR, Cattech-NRAO, TTU-NRAO, and NuSTAR Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South Collaboration, HE.S.S. Collaboration, LWA: Murchison Widefield Array, The CALET Collaboration, The Ferre Auger Collaboration, ALMA Collaboration, Euro VLB1 Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT (See the end matter for the full list of authors.)




Credit: LIGO-Virgo

# 50 teams >3600 authors

~20 orders of magnitude in wavelength

Including VHE and **neutrino** follow-up



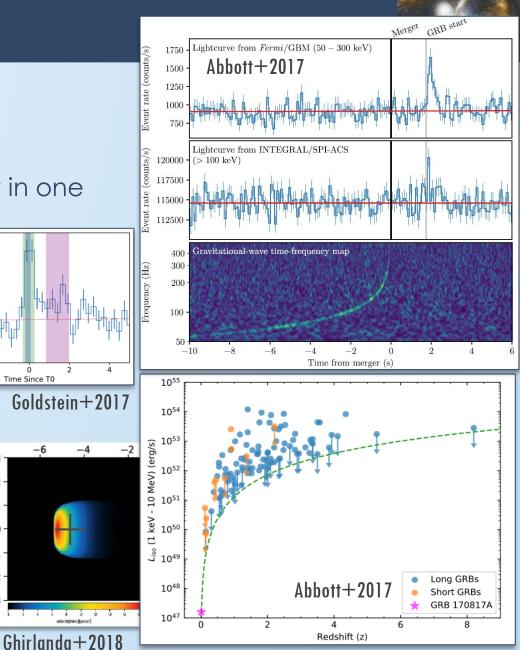


### ICRC • Madison (WI) • 26 July 2019

# Science from GW170817/GRB 170817A

### Fundamental physics/Cosmology

- 1. Direct measurement of the speed of gravity
  - Is the same as the speed of light within one part in one quadrillion
- 2. Test of equivalence Principle:
  - Gravitational mass = inertial mass
- 3. Measure of cosmological constant H0


### Probe of the **NS equation of state**:

E. Bissaldi

 Joint GW/short GRB observations constrain the maximum mass of a NS

Investigation of the emission physics of relativistic jets and the **engine** that produces **short GRBs** 

- GRB 170817A is extremely under-luminous
- Very late radio high-resolution imaging
  - unveiling structured jet viewed off-axis



Standard

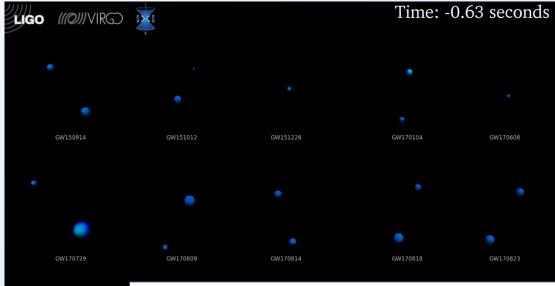
ũ 3000

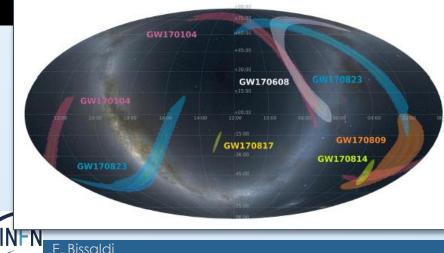
2800 2600

> 2400 2200

Main Peal Soft Tail

2 -


1 -


0

-2.

# LVC results after O1 and O2

GWTC-1: 17 candidates, 11 firm detections (10 BBH, 1 BNS)





# 



[LVC arXiv:1811.12907]

# O3 is here!

- Start: 1<sup>st</sup> April 2019
- LVC public GW Alerts
  - <u>20 detection candidates</u>
     GW Candidate Event Database
    - 16 BBH, 1 BNS, 3 Other
      - More analysis needed to confirm uncertain signals
- \$190425z (BNS, >99%)
  - No coincident trigger from space-based observatories

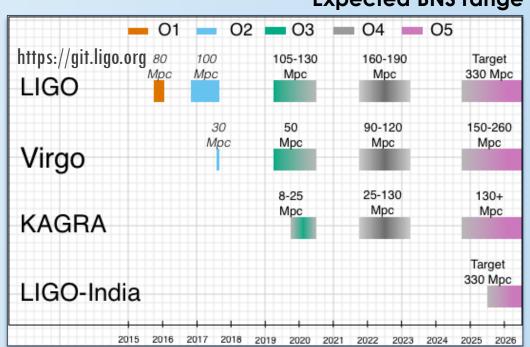
|                                                   |                   | Virgo Public Aler             | ts                            |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>              |          |
|---------------------------------------------------|-------------------|-------------------------------|-------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|
|                                                   | SORT: EVENT ID    | httr                          | s://grace                     | db.ligo.o:                                          | rg/supereve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ents/publ:            | ic/03/   |
|                                                   | Event ID          | Possible Source (Probability) | UTC                           | GCN                                                 | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FAR                   | Comments |
|                                                   | <u>5190720a</u>   | BBH (99%), Terrestrial (1%)   | July 20, 2019<br>00:08:36 UTC | <u>GCN Circulars</u><br><u>Notices   VOE</u>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 per 8.3367<br>years |          |
|                                                   | <u>5190718y</u>   | Terrestrial (98%), BNS (2%)   | July 18, 2019<br>14:35:12 UTC | <u>GCN Circulars</u><br><u>Notices   VOE</u>        | All the second s | 1.1514 per year       |          |
| 50% area: 1378 deg*<br>90% area: 7461 deg*<br>60* | <u>S190707q</u>   | BBH (>99%)                    | July 7, 2019<br>09:33:26 UTC  | <u>GCN Circulars</u><br><u>Notices   VOE</u>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 per 6018.9<br>years |          |
| 30*<br>0*<br>-30*                                 | <u> 5190706ai</u> | BBH (99%), Terrestrial (1%)   | July 6, 2019<br>22:26:41 UTC  | <u>GCN Circulars</u><br>Notices   <u>VOE</u>        | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 per 16.673<br>years |          |
|                                                   | <u>S190701ah</u>  | BBH (93%), Terrestrial (7%)   | July 1, 2019<br>20:33:06 UTC  | <u>GCN Circulars</u><br><u>Notices</u>   <u>VOE</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l per 1.6543<br>years |          |

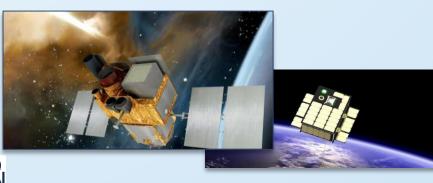
- E.g. GBM observing only 55% of the probability region at event time
- No other MM counterpart reported → large follow-up campagin resulting in ~ 120 GCNs





# Future prospects and conclusions (1)


- Expectations for 4/5-site detector **network** at design sensitivity
  - Improved sky localizations Ο
  - Much larger fraction of coincident Ο observational time windows
- Requirements for gamma-ray observatories
  - Wide field of view ("monitors") Ο
  - **Rapid repointing** capabilities  $\bigcirc$


F. Bissaldi

- Possibility to carry onboard instruments observing other wavelengths (X, UV, O, IR) 0
  - Currently funded missions:

→ Fermi extended to 2022 (with planning >2023)







# Future prospects and conclusions (2)

 GRB understanding has come a long way since the '70s, but there is still a lot to learn!



• Short GRBs are a **prime target** for combined GW-EM observations

→ GRB170817A was not a typical GRB - but showed us the power of joint observations

- BNS mergers seem much less common than expected
- More joint observations are needed!
  - Proposed future missions
    - COSI, AMEGO, Theseus, eAstrogam, etc.
- O3 is up and running!

F. Bissaldi

We look forward to more discoveries ahead!



# **Backup slides**

- Summary of a plausible observing schedule, expected sensitivities, and source localization with aLIGO, AdV and KAGRA detectors, which will be strongly dependent on the detectors' commissioning progress
- From Abbott+2018
   Living Reviews in Relativity 21 arxiv1304.0670

| Epoch                       |                         |                       | 2015-2016 | 2016-2017 | 2019-2020 | 2020+      | 2024+      |
|-----------------------------|-------------------------|-----------------------|-----------|-----------|-----------|------------|------------|
| Planned run du              | ration                  |                       | 4 months  | 9 months  | 12 months | (per year) | (per year) |
| Expected burst range/Mpc    |                         | LIGO                  | 40-60     | 60–75     | 75–90     | 105        | 105        |
|                             |                         | Virgo                 | _         | 20-40     | 40–50     | 40–70      | 80         |
|                             |                         | KAGRA                 | _         | _         | _         | _          | 100        |
| Expected BNS range/Mpc      |                         | LIGO                  | 40-80     | 80-120    | 120-170   | 190        | 190        |
|                             |                         | Virgo                 | -         | 20-65     | 65-85     | 65-115     | 125        |
|                             |                         | KAGRA                 | _         | -         | -         | -          | 140        |
| Achieved BNS range/Mpc LIGO |                         | 60-80                 | 60-100    | -         | _         | _          |            |
|                             |                         | Virgo                 | -         | 25-30     | -         | -          | -          |
|                             |                         | KAGRA                 | _         | -         | _         | _          | _          |
| Estimated BNS detections    |                         | 0.05-1                | 0.2–4.5   | 1–50      | 4-80      | 11-180     |            |
| Actual BNS detections       |                         |                       | 0         | 1         | _         | _          | _          |
| 90% CR                      | % within                | 5 deg <sup>2</sup>    | < 1       | 1–5       | 1–4       | 3–7        | 23-30      |
|                             |                         | $20 \text{ deg}^2$    | < 1       | 7–14      | 12-21     | 14–22      | 65–73      |
|                             | Median/deg <sup>2</sup> |                       | 460–530   | 230-320   | 120-180   | 110-180    | 9–12       |
| Searched area               | % within                | 5 deg <sup>2</sup>    | 4–6       | 15–21     | 20–26     | 23–29      | 62–67      |
|                             |                         | $20 \ \mathrm{deg}^2$ | 14–17     | 33–41     | 42–50     | 44–52      | 87–90      |



Summary of representative active, funded and proposed gamma-ray missions.
 † denotes missions with on-board follow-up instruments which enable more accurate localizations

| Mission/           | Mission | Start | $\gamma$ -ray Detector;    | Energy         | Average | SGRB              | Location                   | Sky          |           |
|--------------------|---------|-------|----------------------------|----------------|---------|-------------------|----------------------------|--------------|-----------|
| Instrument         | Class   | Year  | Other Coverage             | Range          | View    | Rate              | Accuracy                   | View         | Cadence   |
| Swift/BAT          | MIDEX   | 2004- | Coded Mask; XUVO           | 15-150 keV     | 15%     | 8.1               | ${\sim}2'^\dagger$         | 88%          | Daily     |
| Fermi/GBM          | Probe   | 2008- | Scintillators; $\gamma$    | 8-40,000 keV   | 50%     | 39.5 <sup>1</sup> | $\sim 12^{\circ}$          |              |           |
| Fermi/LAT          | Probe   | 2008- | Pair conversion; $\gamma$  | 0.04-300 GeV   | 20%     | 1.7               | ${\sim}0.5^{\circ}$        | 100%         | 3 Hours   |
| IACTS <sup>2</sup> |         | 2004- | Cherenkov (Air)            | 0.1-100 TeV    | Pointed | ?                 | <0.1°                      |              |           |
| HAWC               |         | 2015- | Cherenkov (Water)          | 0.1-100 TeV    | 15%     | ?                 | <1°                        | 67%          | Daily     |
| BurstCube          | CubeSat | 2021  | Scintillators              | 30-1000 keV    | >30%    | >20               | $\sim 20^{\circ}$          |              |           |
| SVOM/ECLAIRS       |         | 2021  | Coded Mask; $\gamma XO$    | 4-120 keV      | 15%     | 7                 | <14'                       | ${\sim}50\%$ | Variable  |
| SVOM/GRM           |         | 2021  | Scintillators; $\gamma XO$ | 50-5000 keV    | 15%     | 15                |                            |              |           |
| Glowbug            | MoO     | 2023  | Scintillators              | 30-2000 keV    | 50%     | 50                | ~9-12°                     |              |           |
| CTA                |         | 2022  | Cherenkov (Air)            | 0.05-300 TeV   | Pointed | ?                 | $< 0.05^{\circ}$           |              |           |
| SGSO               |         | 2022  | Cherenkov (Water)          | 0.1-100 TeV    | 24%     | ?                 | <0.4°                      | 67%          | Daily     |
| Bia (2)            | MoO     | 2025  | Scintillators              | 20-2000 keV    | 80%     | 80-120            | $\sim 10-12^{\circ}$       |              |           |
| COSI-SMEX          | SMEX    | 2025  | Compton                    | 100-5000 keV   | 25%     | 10-20             | ${\sim}0.5^{\circ}$        | $80\%^{3}$   | 1.5 Hours |
|                    |         |       | Scintillators              | 150-5000 keV   | 50%     | 10-20             |                            |              |           |
| MoonBEAM           | MoO     | 2025  | Scintillators              | 30-1000 keV    | 100%    | 35-40             | $\sim 1^{\circ 4}$         |              |           |
| Nimble/HAM         | SMEX    | 2025  | Scint.; UVOIR              | 20-3000 keV    | 40%     | 25-45             | $\sim$ 12-15° <sup>†</sup> |              |           |
| AMEGO              | Probe   | 2030  | Compton, Pair              | 0.2-30,000 MeV | 20%     | 60-100            | ${\sim}0.5^{\circ}$        | 100%         | 3 Hours   |
| STROBE-X           | Probe   | 2030  | Coded Mask; X              | 2-50 keV       | 30%     | 7-10              | ${\sim}2$ '                | 67%          | Variable  |
| THESEUS            |         | 2032  | Coded Mask; XIR            | 2-20,000 keV   | 30%     | 15-35             | 5'†                        | 64%          | 4.5 Hours |



From Burns+2019 arxiv 1903.04472