COSMIC RAYS AND MAGNETIC FIELD IN THE CORE AND HALO OF THE STARBURST M82: IMPLICATIONS FOR GALACTIC WIND PHYSICS

ArXix: Next Week

Benjamin Buckman Tim Linden Todd Thompson

QUESTION!

Can cosmic rays propel a gas cloud?

If the answer to the previous question was yes, explain.

QUESTION!

Can cosmic rays propel a gas cloud?

If the answer to the previous question was yes, explain.

QUESTION!

Can cosmic rays propel a gas cloud?

If the answer to the previous question was yes, explain.

 $a_{gas} = -\frac{\nabla P_{CR}}{\rho_{gas}}$ Acceleration of gas from CRs is due to the gradient of the CR pressure mediated by the mangetic field

B. J. Buckman [CCAPP, OSU] -- ArXiv: Next Week

COSMIC RAYS AND MAGNETIC FIELD IN THE CORE AND HALO OF THE STARBURST M82: IMPLICATIONS FOR GALACTIC WIND PHYSICS

ArXix: Next Week

Benjamin Buckman Tim Linden Todd Thompson

STARBURST GALAXY M82

- Gamma-ray detection Not resolved
- Spatially resolved radio halo measurements @ multiple wavelengths
- Viewed from edge-on
- Well studied galactic wind
- Starburst core known SNR and dimension

GALPROP

Cosmic ray Distribution

Energy Losses

Transport

Injection

GALPROP

- ▶injection
- ► propagation
- ► energy losses
- ▶ secondaries

Radio Emission

- Synchrotron
- Free-Free

Gamma-ray Emission

- Bremsstrahlung
- Inverse Compton
- Pion-decay Emission

B. J. Buckman [CCAPP, OSU] -- ArXiv: Next Week

Simulation box size: $R \in [0,5]$ kpc, $z \in [-4,4]$ kpc

INPUT DISTRIBUTIONS

- Magnetic Field (B) and Gas Density (n)
 - Constant inside ellipsoidal core
 - Outside core: $B \propto r^{-\beta}$, $n \propto r^{-2}$
- Interstellar Radiation Field
 - Determined from exponential disk of sources (dust+stars)
- Cosmic-ray Sources
 - Constant inside ellipsoidal core
 - No sources outside core

CONSTRAINING PARAMETERS

- Use integrated radio and gamma-ray emission to constrain properties in starburst core:
 - Magnetic Field
 - Gas Density
- Use extended radio halo to constrain halo properties:
 - Magnetic field, $B \propto r^{-1}$
 - Gas density
 - CR advection velocity

INTEGRATED EMISSION

We replicated emission with our models We constrain magnetic field and gas density **DEGENERACY** in the core

B. J. Buckman [CCAPP, OSU] -- ArXiv: Next Week

TIMESCALES

$$\left(\frac{E}{1 \ GeV}\right) = \left(\frac{\nu_{crit}}{1 \ GHz}\right)^{\frac{1}{2}} \left(\frac{B}{100 \ \mu G}\right)^{-\frac{1}{2}}$$

Electron Cooling Timescales

$$- \tau_{ionization} \sim 10^{6} \left(\frac{\nu_{crit}}{1 \, GHz}\right)^{\frac{1}{2}} \left(\frac{B}{100 \, \mu G}\right)^{-\frac{1}{2}} \left(\frac{n}{100 \, cm^{-3}}\right)^{-1} \text{yr}$$

$$- \tau_{bremss} \sim 3 \times 10^{5} \left(\frac{n}{100 \, cm^{-3}}\right)^{-1} \text{yr}$$

$$- \tau_{IC} \sim 3 \times 10^{5} \left(\frac{\nu_{crit}}{1 \, GHz}\right)^{-\frac{1}{2}} \left(\frac{B}{100 \, \mu G}\right)^{\frac{1}{2}} \left(\frac{U_{rad}}{1000 \, eV \, cm^{-3}}\right)^{-1} \text{yr}$$

$$- \tau_{synch} \sim 10^{6} \left(\frac{\nu_{crit}}{1 \, GHz}\right)^{-\frac{1}{2}} \left(\frac{B}{100 \, \mu G}\right)^{-\frac{3}{2}} \text{yr}$$
Spectral index from competition of cooling timescales

RADIO SPECTRAL INDEX ALONG MINOR AXIS

- Spectral index changes by >1.5 along the minor axis of M82
- Changing of cooling mechanism can change spectral index by 1 at most
- Spectral steeping is due to the galactic wind and changing cooling mechanism

 $22\,\mathrm{cm}-6\,\mathrm{cm}$

0.0

-0.5

-1.0

-1.5

3

SPECTRAL STEEPENING CONSTRAINS:

- Cosmic ray population
- Magnetic field
- Gas density
- Wind velocity

All along the minor axis of M82

COSMIC RAY SPECTRA

Colors denote distance from core (0, 0.2, 0.5, 3.0) kpc

GAS ACCELERATION

agas

 Cosmic rays are subdominant to gravity

 ∇P_{CR}

 ρ_{gas}

GAS ACCELERATION II

 $a_{gas} = -\frac{\nabla U_B}{\rho_{gas}}$

- Magnetic field is dynamically relevant!
- May effect galactic winds!

SUMMARY

• Using GALPROP:

- Modeled integrated gamma-ray and radio data
- Modeled radio halo and constrained magnetic field, gas density, and wind velocity

- Cosmic rays are not able to drive galactic winds in starburst galaxies
- Magnetic fields are dynamically relevant to galactic winds!

QUESTIONS?

MAGNETIC FIELD VS GAS DENSITY

- Degeneracy due to:
 - Relative gammaray/radio normalization
 - Radio spectral index
- We chose 3 models to exemplify behavior
- Magnetic Field must be >150 microG

EXTENDED EMISSION

B. J. Buckman [CCAPP, OSU] -- ArXiv: Next Week

ENERGY DENSITY

