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QUESTION!

• Can cosmic rays propel a gas cloud?

• If the answer to the previous question was yes, explain.
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𝑎𝑔𝑎𝑠 = −
∇𝑃𝐶𝑅
𝜌𝑔𝑎𝑠

Acceleration of gas from CRs is due to 

the gradient of the CR pressure

mediated by the mangetic field
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STARBURST GALAXY M82

• Gamma-ray detection – Not resolved

• Spatially resolved radio halo measurements @ multiple 
wavelengths

• Viewed from edge-on

• Well studied galactic wind

• Starburst core – known SNR and dimension
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MODELING CR’S IN M82
IMPORTANT INGREDIENTS
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GALPROP

GALPROP
►injection
►propagation
►energy losses 
►secondaries

Cosmic ray 
Distribution

Radio Emission
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•Free-Free
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• Inverse Compton
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INPUT DISTRIBUTIONS

• Magnetic Field (𝐵) and Gas Density (𝑛)

– Constant inside ellipsoidal core

– Outside core: 𝐵 ∝ 𝑟−𝛽, 𝑛 ∝ 𝑟−2

• Interstellar Radiation Field

– Determined from exponential disk of 
sources (dust+stars)

• Cosmic-ray Sources

– Constant inside ellipsoidal core

– No sources outside core
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Simulation box size:
𝑅 ∈ [0,5] kpc, 𝑧 ∈ [−4,4] kpc

200pc

50 pc

Starburst core



CONSTRAINING PARAMETERS

• Use integrated radio and gamma-ray emission to 
constrain properties in starburst core:

– Magnetic Field

– Gas Density

• Use extended radio halo to constrain halo properties:

– Magnetic field, 𝐵 ∝ 𝑟−𝛽

– Gas density

– CR advection velocity
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INTEGRATED 
EMISSION
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gamma-ray radio

We replicated emission with our models

We constrain magnetic field and gas density 

DEGENERACY in the core



EXTENDED 
EMISSION
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Wavelength

increases

Halo size

increases



TIMESCALES
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• Electron Cooling Timescales

– 𝜏𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛~10
6 𝜈𝑐𝑟𝑖𝑡
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1

2 𝐵

100 𝜇𝐺

−
1

2 𝑛

100 𝑐𝑚−3

−1
yr

– 𝜏𝑏𝑟𝑒𝑚𝑠𝑠~3 × 105
𝑛

100 𝑐𝑚−3

−1
yr
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spectrum

13

Spectral index from 

competition of 

cooling timescales



RADIO SPECTRAL INDEX 
ALONG MINOR AXIS
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• Spectral index changes by >1.5 

along the minor axis of M82

• Changing of cooling mechanism 

can change spectral index by 1 

at most

• Spectral steeping is due to the

galactic wind and changing 

cooling mechanism



SPECTRAL STEEPENING CONSTRAINS:

• Cosmic ray population

• Magnetic field

• Gas density

• Wind velocity
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All along the minor 

axis of M82



COSMIC RAY 
SPECTRA

B. J. Buckman [CCAPP, OSU] -- ArXiv: Next Week 16

Colors denote distance from 

core (0, 0.2, 0.5, 3.0) kpc

Protons Electrons+Positrons

Radio emission 

spectral steepening



GAS 
ACCELERATION
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Cosmic Rays

Gravity
𝑎𝑔𝑎𝑠 = −

∇𝑃𝐶𝑅
𝜌𝑔𝑎𝑠

• Cosmic rays are 

subdominant to gravity



GAS 
ACCELERATION II
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Cosmic Rays

Gravity

Magnetic Field

𝑎𝑔𝑎𝑠 = −
∇𝑈𝐵
𝜌𝑔𝑎𝑠

• Magnetic field is 

dynamically relevant!

• May effect galactic

winds!



SUMMARY

• Using GALPROP:

– Modeled integrated gamma-ray and radio data

– Modeled radio halo and constrained magnetic field, gas 
density, and wind velocity

• Cosmic rays are not able to drive galactic winds in 
starburst galaxies

• Magnetic fields are dynamically relevant to galactic 
winds!
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QUESTIONS?
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MAGNETIC FIELD 
VS GAS DENSITY
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• Degeneracy due to:

• Relative gamma-

ray/radio 

normalization

• Radio spectral index

• We chose 3 models to 

exemplify behavior

• Magnetic Field must be 

>150 microG



EXTENDED 
EMISSION
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ENERGY 
DENSITY
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