ICRC 2019 - Madison, USA

Anisotropies of the highest energy cosmic-ray events recorded by the Pierre Auger Observatory in 15 years of operation

Lorenzo Caccianiga for the Pierre Auger Collaboration

Introduction

Aim:

study the arrival directions of the **highest energy cosmic rays** (E>32 EeV), above the observed cutoff, at **small and intermediate scale** ($\leq 30^{\circ}$)

Previous results:

- excess when looking at events with $E \ge 58$ EeV within 15° from the position of **Centaurus A**

 \sim 3 σ post-trial significance (Ugo Giaccari for the Pierre Auger Collaboration - ICRC 2017)*

- indication of anisotropy in the UHECRs sky at E \geq 39 EeV when comparing with the position of Starburst Galaxies \sim 4 σ post-trial significance (The Pierre Auger Collaboration - ApJL, 853:L29 (2018))

► Update these results with the largest dataset of events above the flux suppression ever produced (nearly 15 years)

* scan performed in the 40-80 EeV range

The dataset

- Largest dataset so far of events above the observed flux suppression
- Events measured by the Surface Detector of Auger, reconstructed Energy \geq 32 EeV
- From the 1st of January 2004 to the 31st of August 2018
- Two different sets of events each with its proper selection and reconstruction:
 - **1672 'Vertical'** events: zenith angle \leq 60°.

Selected when the station with the highest signal is surrounded by at least 4 active stations and the core falls in an equilateral or isosceles triangle of active stations

- **485 'Inclined'** events: 60° < zenith angle $\leq 80^{\circ}$

Selected when the station with the highest signal is surrounded by at least 5 active stations

- Total exposure: 101,400 km² sr yr
- Total number of events: 2157

For more details about the two different reconstructions, see Valerio Verzi's talk - CRI7e PoS(ICRC2019)450

Search for overdensites

See also Armando di Matteo's talk CRI11b-PoS(ICRC2019)439 for a whole-sky search using Auger and TA Note: the Auger dataset used here covers a wider time and energy range than the one used in the combined analysis ______

The Centaurus A region

Cen A is the closest radiogalaxy D~3.6 Mpc

 $\begin{aligned} &\text{Scan:} \\ &1^{\circ} \leq \psi \leq 30^{\circ} \\ &32 \text{ EeV} \leq E_{th} \leq 80 \text{ EeV} \end{aligned}$

Most significant excess: $E_{th} = 37 \text{ EeV}$ $\psi = 28^{\circ}$ $n_{obs} = 203 \quad n_{exp} = 141$ local p-value=1.5x10⁻⁷ post-trial : 3.9 σ

Likelihood test for anisotropy with astrophysical catalogs

We expect that **brighter** objects contribute more to the flux, and we want to take into account **interaction**: **Likelihood Method**

Probability maps built including:

- Weight objects by their relative flux in the corresponding electromagnetic wavelength
- Different attenuation due to different distances to sources taken into account
- A smearing angle Θ around each object to take into account magnetic deflections > First free parameter
- Source fraction (rest isotropic) \succ Second free parameter (f_{aniso})
- Directional exposure normalized to the total number of events

Test statistic defined as the ratio of likelihoods: TS = $2 \log \left[\mathscr{L}(\psi, f_{aniso}) / \mathscr{L}(f_{aniso} = 0) \right]$

Scan in energy thresholds **32** EeV \leq Eth \leq **80** EeV [1 EeV steps]

Test 4 different catalogs

Likelihood test for anisotropy with astrophysical catalogs

γ-emitting AGNs

- Selected using Fermi 3FHL (was 2FHL)
- UHECR flux proxy: Φ (E>10 GeV)
- **33 SOURCES** (including Cen A, Formax A, M87, Mkn421)
- Majority blazars of BL-Lac type and radio-galaxies of FR-I type

Swift-BAT

- UHECR flux proxy: Φ (14–195 keV)
- Different AGN sample than previous one (both radio loud and quiet)
- >300 sources

Starburst Galaxies

- UHECR flux proxy Φ (1.4 Ghz)
- Selection based on Ackermann+ 12 and Becker+ 09, with the addition of data from HEASARC Radio Master Catalog
 22 courses (inclusion of contents)
- **32 SOUICES** (including Circinus, M82 M83...)

2MRS

- UHECR flux proxy Φ (k-band)
- Traces local matter (some 10⁴ sources)
- Local group taken away by selecting only events with D>1Mpc

Likelihood test for anisotropy with astrophysical catalogs

Highest TS = 29.5 found for starburst galaxies with E_{th} =38 EeV

All the most significant excesses happen at similar E_{th} and angular scale

Note: 15° smearead Fisher-Von Misses distribution \sim 1.59×15°=24±8° top-hat

Discussion

Conclusions and outlook

Update of the two most significant results of previous analyses with new data:

- Centaurus A: most significant excess at E_{th} = 37 EeV ψ = 28°
 - 3.9 σ post-trial significance
- **Starburst Galaxies**: best rejection of pure isotropic hypothesis at
 - $E_{th} = 38 \text{ EeV}$ $f_{aniso} = 11\% \Theta = 15^{\circ} 4.5 \sigma$ post-trial significance
- The region around the most significant excess is populated by a number of highly contributing candidate sources in the considered catalogs
- Note: in penalized p-values only the clearly accountable trials (scans) are taken into account. There is no rigorous way of taking into account the penalization due to other searches performed within the Auger Collaboration and outside

We look forward to increasing our dataset even more and see if the significance continues to grow, as expected if what we see is a real signal and not a fluctuation

Data from Auger Prime will help anisotropy studies in the next years

Backup slides

Discussion

starburst

Evolution in time

Model Excess Map

Model Excess Map - Starburst galaxies - E > 38 EeV

Parameter space

Sources most contributing to the likelihood analysis

Starburst Galaxies

Src

M83

NGC4945

NGC253

Circinus NGC1068

NGC1808 NGC1672

NGC4631

NGC1365

NGC4666

NGC3627

NGC2903

NGC3628

M61

M51 NGC660

y-emitting AGNs

Swift-BAT

	b	excess-weight	Src	l b	excess-weight	Src	1	b	excess-weight
305.27	13.34	100.0%	CenA	309.52 19.42	100.0%	CenA	309.52	19.42	100.0%
97.36	-87.97	77706	Mkn421	179.83 65.03	22.6%	Circinus	311.33	-3.81	18.0%
21/1 52	21 07	27 701	NGC1275	150 58 -13 26	14.20%	NGC4945	305.27	13.34	12.9%
011 00	01.07 0.01	21.170 22 Ani	Formov A	2/10 16 56 60		NGC2110	212.93	-16.55	3.8%
311.33	-3.01	ZZ.4%	I UIIIAXA MOZ		11.0% 11.0%	NGC6300	328.49	-14.05	3.3%
1/2.10	-51.93	14.8%	IVIN/	283.18 14.49	11.0%	NGC5506	339.15	53.81	3.2%
241.21	-35.90	3.8%	CenB	309./2 1./3	1.3%	MCG-05-23-016	262.74	17.23	3.0%
268.78	-38.99	2.8%	Mkn501	63.60 38.86	5.7%	NGC7172	15.13	-53.07	2.5%
142 81	8422	2 20/n	APLibrae	340.68 27.58	2.3%	NGC3783	287.46	22.95	2.5%
227.96	-54.60	2 10/0	PMN10816-1311	234.80 12.12	16%	NGC4507	299.64	22.86	2.1%
201.00	-0-1.00 CO 07	1.00				IC4329A	317.50	30.92	2.1%
233.04	02.37	1.0%				NGC4388	279.12	74.34	2.1%
284.3/	66.28	1.3%				NGC7582	348.08	-65.70	1.9%
241.96	64.42	1.3%				NGC4151	155.08	75.06	1.8%
208.71	44.54	1.2%				ES0103-035	329.78	-23.18	1.4%
104.85	68.56	1,1%				NGC1365	237.96	-54.60	1.4%
141 61	_47.35	1 10/0				NGC6814	29.35	-16.01	1.3%
171.01 Ω/Ω 0E	C/ 70	110/				401344-60	309.77	1.51	1.3%
240.00	04./0	I. 19/0				NGC3081	259.02	25.03	1.2%
						NGC7314	27.14	-59.74	1.1%
						NGC3227	216.99	55.45	1.1%
						NGC3281	273.01	19.78	1.1%
						NGC5728	337.32	38.10	1.1% 16
						MCG-06-30-015	313.29	27.68	1.0%

Scenario A for attenuation

Mass composition model following best fit in JCAP 04 (2017) 38:

EPOS-LHC $\gamma = 1$ log10(Rcut/V) = 18.68 fH (%) = 0 fHe (%) = 67.3 fN (%) = 28.1 fSi (%) = 4.6 fFe (%) = 0

Figure 1. Deviance $\sqrt{D - D_{\min}}$, as function of γ and $\log_{10}(R_{\text{cut}}/\text{V})$. The dot indicates the position of the best minimum, while the dashed line connects the relative minima of D (valley line). In the inset, the distribution of D_{\min} in function of γ along this line.

17