

Recent Results from the Askaryan Radio Array

Amy Connolly*, for the ARA Collaboration *Ohio State University and CCAPP

Proceedings arXiv:1907.11125

ASKARYAN RADIO ARRAY

USA

Cal Poly
The Ohio State University
Otterbein University
University of Chicago
University of Delaware

University of Kansas
University of Maryland
University of Nebraska
University of Wisconsin-Madison
Whittier College

International Collaborators

Chiba University

National Taiwan University

University College London

Vrije Universiteit Brussel

Weizmann Institue of Science

Why ARA?

- First neutrino > 100 PeV will:
- Bring UHE neutrinos into multi-messenger program
- Be most distant > 100 PeV particle ever seen
 - → test fundamental physics
- Establish scale of detectors needed for:
 - -Neutrino astronomy > 100 PeV
 - -v-N cross-sections at record-breaking √s

ARA is at discovery potential NOW

Five stations
 currently taking data
 in the ice:
 competitive
 sensitivity
 >10¹⁸ eV by 2022

Radio is essential

• 10⁻² neutrinos/km³/year ≥ 10¹⁸ eV

Need detection volumes > 100's km³

-Enabled by ~1 km attenuation lengths in ice

- In-ice: ARA, ARIANNA

Askaryan Radio Array (ARA)

Phased Array Trigger

Trigger on coherent sum

3 Antenna Example, Side View impulsive plane wave (e.g. a neutrino signal)

A. G. Vieregg, et al., JCAP 1602 (2016) no.02, 005. Figure credit: Univ. of Chicago

Diffuse searches: Brian Clark (OSU→MSU), Ming-Yuan Lu (UW) Jorge Torres-Espinosa (OSU)

Livetimes

- Data for this analysis from 2013-2016
- Keep 98% of livetime for analysis, through targeted rejection of anthropogenic noise (previously 62%)

Event filter

- Requires arrival times consistent with plane wave
- Allows deeper analysis of events of interest
- Keeps 90% of events,
 reduces dataset by factor
 of 10

 NSF BIGDATA grant

Prof. Carl Pfendner (Denison)

Selection Criteria

- Cut in 2d space in signal-tonoise, cross-correlation
- Optimize: best expected limit
- Expected backgrounds:
 0.01-0.02 events/polarization/ station

Efficiencies

Improved over the first ARA searches

 Reduced backgrounds while reducing number of

cuts

Box opening imminent Quality cuts Event filter SNR-CC cut

Ice Properties

- Pulsers from
 - -IceCube strings 1&22
 - -South Pole IceCore (SPIce) hole

 Direct, refracted from same pulse

Cosmic Rays

Ongoing search templatebased

Simulating EAS for ARA using CoREAS

- Shower simulated with theta=60 deg, phi=360 deg and 10^18 eV
- CoREAS provides emission at the ice surface, which is propagated to the antennas, and folded with the detector response
 - The hadronic models use are QGSJETII.04 and UrQMD 1.3.
 - Thinning was ON, with a thinning fraction of 10^-6.
- Hpol waveforms have stronger signal which is expected as most of the geomagnetic

0 150 100 150 200 200

ARA02

100

150 X axis (m) Antennas

50

String 2

Time (ns)

Time (ns)

E 50

-50

2.5

50

Origin is at SE corner of ARA02 DAQ

Voltage

Time (ns)

Time (ns)

String 1

50

Voltage (mV) 0 2.5

100 50

box.

-200

-150

-100

Top

HPol

Top

VPol

Bottom

Future of ARA

- ARA is taking data with five stations
- This is potentially a discovery instrument
- First v will mark the beginning of neutrino astronomy >100 PeV

Looking ahead

- •We look forward to a larger array (e.g. proposed RNO) Submission to Decadal Survey on Astronomy and Astrophysics (ASTRO2020)
 - Neutrino astronomy, fundamental physics with ~tens of neutrinos >100 PeV
 - First deployment seasons would also be pathfinding for radio component of IceCube Gen2