Fitting B/C cosmic-ray data in the AMS-02 era

L. Derome1, D. Maurin1, P. Salati2, M. Boudaud3, Y. Génolini4, P. Kunzé1

1 LPSC, Université Grenoble Alpes, CNRS/IN2P3, 53 avenue des Martyrs, 38026 Grenoble, France
2 LAPTh, Université Savoie Mont Blanc & CNRS, 74941 Annecy Cedex, France
3 LPTHE, SorbonneUniversité & CNRS, 4 Place Jussieu, 75252 Paris Cedex 05, France
4 Service de Physique Théorique, Université Libre de Bruxelles, Boulevard du Triomphe, CP225, 1050 Brussels, Belgium
Work based on:

Fitting B/C cosmic-ray data in the AMS-02 era: a cookbook
L. Derome, D. Maurin, P. Salati, M. Boudaud, Y. Génolini and P. Kunzé

- New generation of experiments (AMS-02, ...): percent-level precision, systematic-dominated data.
- Methods used to constrain models with these data should be updated:
 - improved model precision:
 - Boundary condition
 - Stability of numerical solution
 - Handling of cross-section uncertainties
 - Handling of systematics errors from experimental data

This presentation
Nuclear Cross Sections

- Major ingredient in the modelling of GCR nuclei:
 - Inelastic cross sections: sink term for both primaries and secondaries.
 - Production cross sections: source term for secondaries.
- Several parameterisations of the reactions, based on experimental data, available:
 - Inelastic: Barashenkov [B94], Wellisch [W97], Tripathi [T99], Weber [W03]
 - Production: Weber [W98], Soutoul 01 [S01], Weber [W03], Galprop [G17]
Nuclear Cross Sections

- Major ingredient in the modelling of GCR nuclei:
 - Inelastic cross sections: sink term for both primaries and secondary.
 - Production cross sections: source term for secondaries.
- Several parameterisations of the reactions, based on experimental data, available:
 - Inelastic: Barashenkov [B94], Wellisch [W97], Tripathi [T99], Weber [W03]
 - Production: Weber [W98], Soutoul 01 [S01], Weber [W03], Galprop [G17]
- Impact on B/C ratio larger than data precision
Nuclear Cross Sections

2 approaches to implement cross-section systematics:

- **Norm Scale Slope (NSS)**
 - Simple transformations from reference XS.
 - 3 Nuisance parameters with gaussian distribution and with ranges chosen to encompass different Xs.

- **Linear Combination (LC)**
 - Linear combination of available Xs.
 - Nuisance parameters C_α with a flat distribution.
 - Can fully recover each Xs parametrisation.

- **Cross Sections considered (not the all network):**
 - $\sigma_{\text{Inel.}}$ for B, C, O
 - $\sigma_{\text{Prod.}}$ for C \rightarrow $^{10,11}\text{B}$ and O \rightarrow $^{10,11}\text{B}$,
 - In total: 14-20 nuisance parameters used to handled cross-section systematics.
Propagation Models

- 2 configurations:
 - Model A (diffusion + reacceleration + convection aka QUAIN'T):
 \[K(R) = \beta m_n K_0 \left(\frac{R}{1 \text{ GV}} \right)^{\delta} + \text{reacceleration} \left(V_d \right) + \text{convection} \left(V_c \right) \]
 5 free parameters
 - Model B (pure diffusion aka SLIM):
 \[K(R) = \beta K_0 \left(\frac{R}{1 \text{ GV}} \right)^{\delta} \left(1 + \left(\frac{R_l}{R} \right)^{(\delta+\delta_l)\delta_l} \right)^{\delta_l} \]
 4 free parameters

- Mock Data (1000) generated with statistical errors around reference models for A and B.

- Fit of the mock data, two cases considered:
 - Unbiased: \(\sigma_{\text{Inel., Prod.}}(\text{Fit}) = \sigma_{\text{Inel., Prod.}}(\text{Gen.}) \) (Inel.: W97, Prod.: G17)
 - Biased: \(\sigma_{\text{Inel., Prod.}}(\text{Fit}) \) (Inel.: T99, Prod.: W03) \(\neq \sigma_{\text{Inel., Prod.}}(\text{Gen.}) \)
Unbiased

\[\sigma(\text{Gen.}) = \sigma(\text{Fit}) \]

No nuisance (black):
- \(\chi^2 / \text{dof} \sim 1 \)
- no bias w.r.t parameters values of the models (vertical dashed lines)

With nuisances NSS (\(- \)) and LC (\(-- \)):
- \(\chi^2 / \text{dof} \sim 1 \)
- Larger errors (systematic from XS now included in the errors from the fit)
Biased

$\sigma(\text{Gen.}) \neq \sigma(\text{Fit})$

No nuisance (black):
- Large χ^2 / dof
- Biased best fits w.r.t to parameters values (vertical dashed lines)

With nuisances NSS (—) and LC (--):
- good χ^2 / dof recovered
- Reduced biases on the parameter distributions
- Better results for LC than for NSS as expected.

MODEL A

MODEL B
Systematic errors on Data

AMS02 B/C:

- Dominated by systematic Acceptance error up to 100 GV
- No covariance matrix provided to account for bin-to-bin correlation of systematic errors.
- Model guessed for the covariance matrices ($\alpha = \text{Stat., Acc., Unf., Scale}$):

$$(C^\alpha_{\text{rel}})_{ij} = \sigma_i^\alpha \sigma_j^\alpha \exp\left(-\frac{1}{2} \frac{(\log_{10}(R_i/R_j))^2}{(l^\alpha_{\rho})^2} \right)$$

where:

- σ_i^α is the error from AMS
- l^α_{ρ} is the correlation length in unit of decade of rigidity.

How the choice of l^α_{ρ} impact the best fit values?
Systematic errors on Data

AMS02 B/C:

- Dominated by systematic Acceptance error up to 100 GV
- No covariance matrix provided to account for bin-to-bin correlation of systematic errors.
- Model guessed for the covariance matrices (α = Stat., Acc., Unf., Scale):

\[(C_{rel})_{ij} = \sigma_i^\alpha \sigma_j^\alpha \exp\left(\frac{-1}{2} \frac{(\log_{10}(R_i/R_j))^2}{(l_\rho^\alpha)^2}\right)\]

where:
- \(\sigma_i^\alpha\) is the error from AMS
- \(l_\rho^\alpha\) is the correlation length in unit of decade of rigidity.
AMS B/C fit

AMS B/C fit results as a function of l^{Acc}_{ρ}:

- χ^2/dof from 0.5 to 3.5
- Large best-fit values and errors dependence:
 - Model A: 2 different regimes for low l^{Acc}_{ρ} and high l^{Acc}_{ρ}
 - Model B: Less dependence for values. Still large dependence for errors.
Systematic errors on Data

Acceptance error handling is critical:

- Sum of different contribution, may have different correlation lengths.
- Split acc. error into 3 contributions:
 - Acc. Norm: Flat normalisation error, related to systematic on survival probability: \(l_\rho \sim 1.0 \)
 - Acc. LE: Low Energy error: \(l_\rho \sim .3 \)
 - Acc. res.: Residual error data/MC corrections, ...
 \(l_\rho = 0.01...3 \)
Systematic errors on Data

Acceptance error handling is critical:

- Sum of different contribution, may have different correlation lengths.
- Split acc. error into 3 contributions:
 - Acc. Norm: Flat normalisation error, related to systematic on survival probability: $l_\rho \sim 1.0$
 - Acc. LE: Low Energy error: $l_\rho \sim .3$
 - Acc. res.: Residual error data/ MC corrections, ... $l_\rho = 0.01...3$
AMS B/C fit results as a function of $I^\text{Acc. res.}_\rho$:

- χ^2/dof from 0.7 to 2
- Best-fit values dependence reduced. More stable results for both Model A and B.
- $I^\text{Acc.}_\rho = 0.1$ gives $\chi^2/\text{dof} \approx 1$, stable results and conservative errors.
Conclusions

- Production and inelastic nuclear cross-sections can be implemented in the models with nuisances parameters to propagate ‘uncertainties’ and remove biases from wrong cross-sections.
- Handling of systematic on data from AMS-02 requires to model the bin-to-bin correlation for each source of systematics.
- All analyses performed with USINE [https://lpsc.in2p3.fr/usine]
- Methodology presented here used in:
 - CRD1b (Thursday, July 25) AMS-02 Antiprotons are Consistent with a Secondary Astrophysical Origin, M. Boudeau
 - CRD6a (Monday, July 29): Cosmic ray transport from AMS-02 B/C data: reference parameters and physical interpretation, Y. Génolini
Backup slides
Nuclear Cross-Section

MODEL A

LC unbiased vs. biased

NSS unbiased vs. biased

MODEL B

LC unbiased vs. biased

NSS unbiased vs. biased
Systematic errors on Data + Nuclear Cross Sections

MODEL A

MODEL B
Nuclear Cross-Section

MODEL A

MODEL B

B/C vs R [GV]

- Full Acc
- Split Acc

$\rho^{\text{Acc}} = 0.015$
$\rho^{\text{Acc}} = 0.1$
$\rho^{\text{Acc}} = 1$

AMS-02
Propagation Models

- 2 configurations:
 - Model A (diff.+reac.+conv. aka QUAINTE):
 \[K(R) = \beta^{\text{ini}} K_0 \left(\frac{R}{1 \text{ GV}} \right)^{\delta} K_{\text{HE}}(R) \]
 + reacceleration \(\left(V_d \right) \) + convection \(\left(V_c \right) \)
 - Model B (pure diffusion aka SLIM):
 \[K(R) = \beta K_0 \left(\frac{R}{1 \text{ GV}} \right)^{\delta} \left(1 + \left(\frac{R_l}{R} \right)^{(\delta+S_l)/S_l} \right)^{S_l} K_{\text{HE}}(R) \]
 \[K_{\text{HE}}(R) = \left(1 + \left(R/R_h \right)^{\delta_h/S_h} \right)^{-S_h} \text{ (fixed)} \]

- Mock Data generated with statistical errors around reference models for A and B.

- Fit of the mock data, two cases considered:
 - Unbiased: \(\sigma_{\text{Inel., Prod. (Fit)}} = \sigma_{\text{Inel., Prod. (Gen.)}} \) (Inel.: W97, Prod.: G17)
 - Biased: \(\sigma_{\text{Inel., Prod. (Fit)}} \) (Inel.: T99, Prod.: W03) \(\neq \sigma_{\text{Inel., Prod. (Gen.)}} \)
Nuclear Cross Sections

- Major ingredient in the modelling of GCR nuclei:
 - Inelastic cross sections: sink term for both primaries and secondaries.
 - Production cross sections: source term for secondaries.

- Impact on B/C ratio:
 - Inelastic XSs: 3% at ~ 5 GV, decreases to zero at higher R.
 - Production XSs: $\sim 10\%$ above 20 GV
 - Larger than data precision