CRC2019 36th International Cosmic Ray Conference - Madison, WI; USA THE ASTROPARTICLE PHYSICS CONFERENCE

Fitting B/C cosmic-ray data in the AMS-02 era

L. Derome¹, D. Maurin¹, P. Salati², M. Boudaud³, Y. Génolini⁴, P. Kunzé¹

1 LPSC, Université Grenoble Alpes, CNRS/IN2P3, 53 avenue des Martyrs, 38026 Grenoble, France

2 LAPTh, Université Savoie Mont Blanc & CNRS, 74941 Annecy Cedex, France

3 LPTHE, SorbonneUniversité & CNRS, 4 Place Jussieu, 75252 Paris Cedex 05, France

4 Service de Physique Théorique, Université Libre de Bruxelles, Boulevard du Triomphe, CP225, 1050 Brussels, Belgium

CRC2019 36th International Cosmic Ray Conference Madison, WI, USA THE ASTROPARTICLE PHYSICS CONFERENCE

Work based on :

Fitting B/C cosmic-ray data in the AMS-02 era: a cookbook Astronomy & Astrophysics, 627, A158 (2019)

- L. Derome, D. Maurin, P. Salati, M. Boudaud, Y. Génolini and P. Kunzé
- New generation of experiments (AMS-02, ...): percent-level precision, systematic-dominated data.
- Methods used to constrain models with these data should be updated:
 - improved model precision:
 - Boundary condition
 - Stability of numerical solution
 - Handling of cross-section uncertainties
 - Handling of systematics errors from experimental data

This presentation

- Major ingredient in the modelling of GCR nuclei:
 - Inelastic cross sections: sink term for both primaries and secondaries.
 - Production cross sections: source term for secondaries.
- Several parameterisations of the reactions, based on experimental data, available:
 - Inelastic: Barashenkov [B94], Wellisch [W97], Tripathi [T99], Weber [W03]
 - Production: Weber [W98], Soutoul 01 [S01], Weber [W03], Galprop [G17]

- Major ingredient in the modelling of GCR nuclei:
 - Inelastic cross sections: sink term for both primaries and secondary.
 - Production cross sections: source term for secondaries.
- Several parameterisations of the reactions, based on experimental data, available:
 - Inelastic: Barashenkov [B94], Wellisch [W97], Tripathi [T99], Weber [W03]
 - Production: Weber [W98], Soutoul 01 [S01], Weber [W03], Galprop [G17]
- Impact on B/C ratio larger than data precision

2 approaches to implement cross-section systematics:

- Norm Scale Slope (NSS)
 - Simple transformations from reference XS.
 - 3 Nuisance parameters with gaussian distribution and with ranges chosen to encompass different XSs

- Linear Combination (LC)
 - Linear combination of available XSs.
 - Nuisance parameters C_{α} with a flat distribution.
 - Can fully recover each XSs parametrisation

- Cross Sections considered (not the all network):
 - $\sigma_{\text{Inel.}}$ for B, C, O
 - $\sigma_{\rm Prod.}$ for C \rightarrow ^{10, 11}B and O \rightarrow ^{10, 11}B,
- In total: 14-20 nuisance parameters used to handled cross-section systematics

Propagation Models

- 2 configurations :
 - Model A (diffusion + reacceleration + convection aka QUAINT):

$$K(R) = \beta^{\overline{\eta}} K_0 \left(\frac{R}{1 \text{ GV}}\right)^{\delta} + \text{reacceleration } (V_a) + \text{convection } (V_c)$$

5 free parameters

• Model B (pure diffusion aka SLIM):

$$K(R) = \beta K_0 \left(\frac{R}{1 \text{ GV}}\right)^{\delta} \left(1 + \left(\frac{R_l}{R}\right)^{(\delta + \delta_l)/s_l}\right)^{s_l}$$

4 free parameters

- Mock Data (1000) generated with statistical errors around reference models for A and B.
- Fit of the mock data, two cases considered:
 - Unbiased: $\sigma_{\text{Inel., Prod.}}(\text{Fit}) = \sigma_{\text{Inel., Prod.}}(\text{Gen.})$ (Inel.: W97, Prod.: G17)
 - Biased: $\sigma_{\text{Inel., Prod.}}(\text{Fit})$ (Inel.: T99, Prod.: W03) $\neq \sigma_{\text{Inel., Prod.}}(\text{Gen.})$

Unbiased

 $\sigma(\text{Gen.}) = \sigma(\text{Fit})$

No nuisance (black):

- $\chi^2/dof \sim 1$
- no bias w.r.t parameters values of the models (vertical dashed lines)

With nuisances NSS (—) and LC (--):

• $\chi^2/dof \sim 1$

• Larger errors (systematic from XS now included in the errors from the fit)

MODEL A

 η_t [-]

Biased

 σ (Gen.) $\neq \sigma$ (Fit)

No nuisance (black):

- Large χ^2 /dof
- Biased best fits w.r.t to parameters values (vertical dashed lines)

With nuisances NSS (—) and LC (--):

- good χ^2/dof recovered
- Reduced biases on the parameter distributions
- Better results for LC than for NSS as expected.

MODEL A

MODEL B

Systematic errors on Data

AMS02 B/C:

- Dominated by systematic Acceptance error up to 100 GV
- No covariance matrix provided to account for bin-to-bin correlation of systematic errors.
- Model guessed for the covariance matrices (α = Stat., Acc., Unf., Scale):

$$(C_{\text{rel}}^{\alpha})_{ij} = \sigma_i^{\alpha} \sigma_j^{\alpha} \exp\left(-\frac{1}{2} \frac{(\log_{10}(R_i/R_j))^2}{(l_{\rho}^{\alpha})^2}\right)$$

where:

- σ_i^{α} is the error from AMS
- l_o^{α} is the correlation length in unit of decade of rigidity.

AMS errors for B/C from PRL 120, 021101 (2018)

Systematic errors on Data

AMS02 B/C:

- Dominated by systematic Acceptance error up to 100 GV
- No covariance matrix provided to account for bin-to-bin correlation of systematic errors.
- Model guessed for the covariance matrices (α = Stat., Acc., Unf., Scale):

$$(C_{\text{rel}}^{\alpha})_{ij} = \sigma_i^{\alpha} \sigma_j^{\alpha} \exp\left(-\frac{1}{2} \frac{(\log_{10}(R_i/R_j))^2}{(l_{\rho}^{\alpha})^2}\right),$$

where:

- σ_i^{α} is the error from AMS
- l_{ρ}^{α} is the correlation length in unit of decade of rigidity.

Total correlation matrix

AMS-02 B/C fit

AMS B/C fit results as a function of $l_{\rho}^{Acc.}$:

- χ^2/dof from 0.5 to 3.5
- Large best-fit values and errors dependence:
 - Model A: 2 different regimes for low $l_{\rho}^{Acc.}$ and high $l_{\rho}^{Acc.}$
 - Model B: Less dependence for values. Still large dependence for errors.

Systematic errors on Data

Acceptance error handling is critical:

- Sum of different contribution, may have different correlation lengths.
- Split acc. error into 3 contributions:
 - Acc. Norm: Flat normalisation error, related to systematic on survival probability : $l_{\rho} \sim 1.0$
 - Acc. LE: Low Energy error : $l_{\rho} \sim .3$
 - Acc. res. : Residual error data/ MC corrections, ...

 $l_{\rho} = 0.01...3$

AMS errors from PRL 120, 021101 (2018)

Systematic errors on Data

Acceptance error handling is critical:

- Sum of different contribution, may have different correlation lengths.
- Split acc. error into 3 contributions:
 - Acc. Norm: Flat normalisation error, related to systematic on survival probability : $l_{\rho} \sim 1.0$
 - Acc. LE: Low Energy error : $l_{\rho} \sim .3$
 - Acc. res. : Residual error data/ MC corrections, ...

 $l_{\rho} = 0.01...3$

Total correlation matrix

AMS-02 B/C fit

AMS B/C fit results as a function of $l_{\rho}^{\text{Acc. res.}}$:

- $\chi^2/\text{dof from 0.7 to 2}$
- Best-fit values dependence reduced. More stable results for both Model A and B.
- $l_{\rho}^{\text{Acc.}} = 0.1$ gives $\chi^2/\text{dof} \simeq 1$, stable results and conservative errors.

MODEL A

MODEL B

Conclusions

- Production and inelastic nuclear cross-sections can be implemented in the models with nuisances parameters to propagate 'uncertainties' and remove biases from wrong cross-sections.
- Handling of systematic on data from AMS-02 requires to model the bin-tobin correlation for each source of systematics.
- Full description of analyses and results presented here: A&A, 627, A158 (2019)
- All analyses performed with USINE [https://lpsc.in2p3.fr/usine]
- Methodology presented here used in:
 - CRD1b (Thursday, July 25) AMS-02 Antiprotons are Consistent with a Secondary Astrophysical Origin, M. Boudeau
 - CRD6a (Monday, July 29): Cosmic ray transport from AMS-02 B/C data: reference parameters and physical interpretation, Y. Génolini

Backup slides

MODEL A

MODEL B

2

Systematic errors on Data + Nuclear Cross Sections

MODEL A

MODEL B

MODEL B

Propagation Models

- $\propto R^{\delta \delta_h}$ • 2 configurations : Model A (diff.+reac.+conv. aka QUAINT): $K(R) = \beta^{\eta_i} K_0 \left(\frac{R}{1 \text{ GV}}\right)^{\delta} K_{\text{HE}}(R)$ $10K_0$ $\propto R^{\delta}$ $\propto \beta R^{-\delta_l}$ ((R) + reacceleration (V_{a}) + convection (V_{a}) Model B (pure diffusion aka SLIM): $K(R) = \beta K_0 \left(\frac{R}{1 \text{ GV}}\right)^{\delta} \left(1 + \left(\frac{R_l}{R}\right)^{(\delta + \delta_l)/s_l}\right)^{s_l} K_{HE}(R)$ $\propto \beta^{\eta_t} R^{-\delta}$ R, R_h • Where $K_{HE}(R) = (1 + (R/R_h)^{\delta_h/s_h})^{-s_h}$ (fixed) *R* [GV]
- Mock Data generated with statistical errors around reference models for A and B.
- Fit of the mock data, two cases considered:
 - Unbiased: $\sigma_{\text{Inel., Prod.}}(\text{Fit}) = \sigma_{\text{Inel., Prod.}}(\text{Gen.})$ (Inel.: W97, Prod.: G17)
 - Biased: $\sigma_{\text{Inel., Prod.}}(\text{Fit})$ (Inel.: T99, Prod.: W03) $\neq \sigma_{\text{Inel., Prod.}}(\text{Gen.})$

Impact on B/C ratio:

- Major ingredient in the modelling of GCR nuclei:
 - Inelastic cross sections: sink term for both primaries and secondaries.
 - Production cross sections: source term for secondaries.
- Impact on B/C ratio:
 - Inelastic XSs: 3% at ~5 GV, decreases to zero at higher *R*.
 - Production XSs: ~10% above 20 GV
 - Larger than data precision

