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A study of the muon component of EAS

@ The reconstruction of the primary particle: utilizing the shower
characteristics of the components of the secondary radiation.

@ Open problem: The identification of the primary particle in a
UHE EAS.

Identifying primary particle shower—by—shower using muons

@ The information on the muons in a simulated EAS, combined
with Xmax and energy of the primary E,, are used for a log
likelihood analysis to distinguish primaries




Simulation details

EAS:
o CORSIKA v7.6900 @ Zenith Angle: 0°
@ Primaries: Proton, Iron @ Hadron Model:QGSJET-II
o Energy: 10'° eV - 1019 eV o 110m above sea level
Detector:

@ 2m X 2m stations

@ Stations apart by:
Om, 20m, 50m, 200m
(Collection: 100%, 1%, 0.16%, 0.01%)

o £, =05-50 GeV

e E, resolution: 0, 50%
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The Mapping
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@ The formulation gives stable fit results
@ Makes calculations efficient compared to e.g. binned data



A log-likelihood test

@ We have modeled the shower shape analytically

@ Construction of a likelihood function:In L = In Lgp,pe + In L,

Nobs ) . . - -

] Lshape = Hizul fs’(E/’u R’) ( fs’ IS normahzed)
2 —RCS 7R*25$ 1y
° fi= dE dR2 [Xmax: B, R] = CZeRGH(G +C8) Xima

(C/ =Y, GE.", B, =n [E, (GeV)])

o L, = Poisson(N2*|NP)

’/\ = In L(Proton model) - In L(Iron model) ‘

6/15



° E, = 10%°eV, Continuous detector arrays

(100% Collection)
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t Collection Efficiencies

o E, = 10'°® eV, ideal muon detectors
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Results: At Different £,

o ldeal muon detectors, 0.16% Collection
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Results: With Detector Resolution

e o1 50%

e 02: 20% (E, < 10 GeV) & 50% (rest)

e 03: 20% (10 Gev< E, < 20 GeV) & 50% (rest)
e 04: 20% (E, >20 GeV) & 50% (rest)
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Different Hadron Models

@ L, and Lgp,pe are governed by the lateral number as well as
the number density of the muons

@ Both of the parameters are observed to be varying in a slight
different way in different hadron models
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Results: With Hadron Models

@ A model averaged f; for shape analysis, and corresponding
Lshape

@ A model averaged L,

@ 50 showers each of P and Fe: Compared with the proton
average shape.
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Prospects of upgrading existing surface arrays

@ Introduction of muon tracker arrays can provide us the
necessary information on muons

@ 2m X 2m detectors 50 m apart provides good separation
between P and Fe primaries

@ Arrays of large area low cost detectors are suitable for the
primary identification

@ Reasonable options: Gaseous large area detectors with
suitable pickup strip pixels

@ Ongoing Work: A GEANT4 simulation with RPC/GEM
tracker arrays.
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Concluding Remarks

@ The muon component of an EAS contain important
information on the primary CR

@ The shape of the muon shower component can be
parametrized

@ The hadronic models give rise to a higher uncertainty in the
primary separation mechanism. A model averaged shower
shape may be utilized.

@ Information on the shape and flux can be used to identify
primaries using a realistic surface array

@ Separation of primaries improves with increase in primary
energy. At higher energies the flux is much lower, but more
precise information on the primaries are obtainable

@ The composition of the primary can be useful to probe the
source of UHECR.
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