Using EAS muons to identify Cosmic Primaries: Impact of the hadronic models

Moon Moon Devi Tezpur University, Assam, India (with R. Budnik, WIS, Israel)

ICRC Talk

- Introduction: Study of the muon component
- Methodology: using the horizontal spread of secondary muons to determine primaries
- Results
- Effect due to different hadronic models
- Concluding Remarks

A study of the muon component of EAS

- The reconstruction of the primary particle: utilizing the shower characteristics of the components of the secondary radiation.
- Open problem: The identification of the primary particle in a UHE EAS.

Goal

- Identifying primary particle shower-by-shower using muons
- The information on the muons in a simulated EAS, combined with X_{max} and energy of the primary E_p , are used for a log likelihood analysis to distinguish primaries

Simulation details

EAS:

- CORSIKA v7.6900
- Primaries: Proton, Iron
- Energy: $10^{16} \text{ eV} 10^{19} \text{ eV}$

Detector:

- Zenith Angle: 0°
- Hadron Model:QGSJET-II
- 110m above sea level

- 2m X 2m stations
- Stations apart by: 0m, 20m, 50m, 200m (Collection: 100%, 1%, 0.16%, 0.01%)
- $E_{\mu}=0.5$ 50 GeV
- E_{μ} resolution: 0, 50%

The Mapping

•
$$f_s = \frac{dN_{\mu}}{dE_{\mu}dR^2}[X_{max}, E_{\mu}, R] = Ce^{-RR_0^{-1} + (R_1R^{-2D} + K)X_{max}}$$

- The formulation gives stable fit results
- Makes calculations efficient compared to e.g. binned data

A log-likelihood test

- We have modeled the shower shape analytically
- Construction of a likelihood function: $\ln L = \ln L_{shape} + \ln L_n$

•
$$L_{shape} = \prod_{i=1}^{N_{\mu}^{obs}} f_s^i(E_{\mu}^i, R^i)$$
 (f_s^i is normalized)

•
$$f_s = \frac{dN_{\mu}}{dE_{\mu}dR^2}[X_{max}, E_{\mu}, R] = C_0^2 e^{-RC_3^5 + (C_6^7 R^{-2C_7^8} + C_9^{11})X_{max}}$$

 $(C_i^j = \sum_{n=i}^j C_n \bar{E}_{\mu}^{\ n}, \ \bar{E}_{\mu} = \ln [E_{\mu} \text{ (GeV)}])$

•
$$L_n = Poisson(N_{\mu}^{obs}|N_{\mu}^{exp})$$

• $\Lambda = \ln L$ (Proton model) - $\ln L$ (Iron model)

Results

• $E_p = 10^{16} eV$, Continuous detector arrays (100% Collection)

Results: At Different Collection Efficiencies

• $E_p = 10^{16}$ eV, ideal muon detectors

Results: At Different E_p

• Ideal muon detectors, 0.16% Collection

Results: With Detector Resolution

- σ₁ 50%
- σ_2 : 20% ($E_{\mu} \leq 10$ GeV) & 50% (rest)
- σ_3 : 20% (10 Gev $\leq E_{\mu} \leq$ 20 GeV) & 50% (rest)
- σ_4 : 20% ($E_{\mu} \geq 20$ GeV) & 50% (rest)

Different Hadron Models

- *L_n* and *L_{shape}* are governed by the lateral number as well as the number density of the muons
- Both of the parameters are observed to be varying in a slight different way in different hadron models

Results: With Hadron Models

- A model averaged f_s for shape analysis, and corresponding L_{shape}
- A model averaged L_n
- 50 showers each of P and Fe: Compared with the proton average shape.

Prospects of upgrading existing surface arrays

- Introduction of muon tracker arrays can provide us the necessary information on muons
- 2m X 2m detectors 50 m apart provides good separation between P and Fe primaries
- Arrays of large area low cost detectors are suitable for the primary identification
- Reasonable options: Gaseous large area detectors with suitable pickup strip pixels
- Ongoing Work: A GEANT4 simulation with RPC/GEM tracker arrays.

- The muon component of an EAS contain important information on the primary CR
- The shape of the muon shower component can be parametrized
- The hadronic models give rise to a higher uncertainty in the primary separation mechanism. A model averaged shower shape may be utilized.
- Information on the shape and flux can be used to identify primaries using a realistic surface array
- Separation of primaries improves with increase in primary energy. At higher energies the flux is much lower, but more precise information on the primaries are obtainable
- The composition of the primary can be useful to probe the source of UHECR.

Thank you for the kind attention!

9