

Observing ultra-high energy cosmic rays with prototypes of the Fluorescence detector Array of Single-pixel Telescopes (FAST) in both hemispheres

Toshihiro Fujii (Hakubi Center for Advanced Research, Kyoto University, fujii@cr.scphys.kyoto-u.ac.jp)
Justin Albury, Jose Bellido, Ladislav Chytka, John Farmer, Petr Hamal, Pavel Horvath, Miroslav
Hrabovsky, Jiri Kvita, Max Malacari, Dusan Mandat, Massimo Mastrodicasa, John Matthews, Stanislav
Michal, Xiaochen Ni, Libor Nozka, Miroslav Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek,
Francesco Salamida, Radomir Smida, Stan Thomas, Petr Travnicek, Martin Vacula (FAST Collaboration)
25th July 2019, ICRC 2019, Madison, USA

Ultra-high energy cosmic rays (UHECR), 10^{20} eV

- Less deflection in galactic/extragalactic magnetic fields
- Related with extremely energetic astrophysical phenomena
- > Spectrum suppression,
 - Indicate nearby sources distributed non-uniformly within ~50 Mpc
 - Correlation between UHECRs and nearby energetic sources or objects
 - Next-generation astronomy

E>39 EeV, 4.0σ (Auger)

No conclusive results on UHECR sources...

Fluorescence detector Array of Single-pixel Telescopes

- ◆ Target: > 10^{19.5} eV, ultra-high energy cosmic rays (UHECR) and neutral particles
 - → Huge target volume ⇒ Fluorescence detector array

Fine pixelated camera

Smaller optics and single or a few pixels

Too expensive to cover a huge area

Low-cost and simplified telescope

Fluorescence detector Array of Single-pixel Telescopes

Telescope Array (TA) Pierre Auger Observatory (Auger)

Reference: T. Fujii et al., Astropart. Phys. 74 (2016) 64-72

- ◆ Each telescope: 4 PMTs, 30°×30° field-of-view (FoV)
 - ◆ Reference design: 1 m² aperture, 15°×15° FoV per photo-multiplier tube (PMT)
 - ◆ Each station: 12 telescopes, 48 PMTs, 30°×360° FoV
- ◆ Deploy on a triangle grid with 20 km spacing, like "Surface Detector Array"
- ♦ With 500 stations, a ground coverage is 150,000 km²

5 years: 5100 events (E > 57 EeV), 650 events (E > 100 EeV)

- Directional anisotropy on arrival directions, energy spectrum, mass composition

FAST fluorescence prototypes in TA

- ◆4 PMTs (20 cm, 8 dynodes R5912-03MOD, base E7694-01)
 - ↑ 1 m² aperture of the UV band-pass filter (ZWB3), segmented mirror of 1.6 m diameter
- ◆ Total 3 telescopes installed at TA site by October 2018
 - **◆** Total **545 hours** by June 2019

FAST observation set-up

- ◆ Remote controlling observation
- ◆ Synchronized operation with external triggers from Telescope Array fluorescence detector (TA FD)
- ◆80% FoV of TA FD

UHECR signal and reconstruction

Azimuth angle [degree]

FAST top-down reconstruction (Preliminary) Zenith Azimuth Core(X) Core(Y) Xmax

Zenith Azimuth Core(X) Core(Y) Xmax Energy 59.8 deg -96.7 deg 7.9 km -9.0 km 842 g/cm² 17.3 EeV

Coincidence shower search between TA FD and FAST

- ◆ Data period: 2018/Oct/06 2019/Jan/14, 52 hours with **3 FAST prototypes**
- Event number: 236 (TA FD) -> 37 (significant signals with FAST, S/N > 6 σ , Δt > 500 ns)
 - ◆ The shower parameters are reconstructed by TA FD monocular analysis.

- ♦ Maximum detectable impact parameter: ~20 km at 10^{19.5} eV with brighter signal showers
 - ♦ 2 events above 10 EeV in 52 hours → ~25 events/year (15% duty cycle)

1) Highest energy event

TA data

FAST data

Azimuth Zenith Core(X) Core(Y)Energy 36.2 deg 18.0 deg 5.0 km -4.5 km 15.8 EeV TA FD (Preliminary) 33.2 deg 35.8 deg -5.3 km 20.0 EeV 6.1 km

Azimuth Zenith Core(X) Core(Y)Xmax Energy 33.9 deg -4.7 km 808 g/cm² 18.8 EeV 19.3 deg 4.6 km

800 100 Time bin [100 ns]

2 Second highest energy event

TA data

FAST data

FAST top-down reconstruction (Preliminary)

Zenith Azimuth Core(X) Core(Y) Xmax Energy 3.3 deg 110.5 deg 8.7 km -9.2 km 830 g/cm² 10.3 EeV

Installation of 1st FAST prototype in Auger

Pierre Auger Observatory Malargue, Argentina

FAST FD (Los Leones)

Cherenkov signal

Horizontal laser signal

Summary and future plans

- Fluorescence detector Array of Single-pixel Telescopes (FAST)
 - 10×statistics compared to Auger and TA×4 with $X_{\rm max}$
 - Directional anisotropy on arrival direction, energy spectrum and mass composition
- Installed total 3 telescopes at Telescope Array site and 1st telescope in the Pierre Auger Observatory
 - Stable observation with remote controlling
 - UHECR detections, and their reconstruction method implemented.
- We will continue to operate the telescopes and search for UHECR in coincidence with current observatories.
 - A resolution study with the full FAST array
 - Developing new electronics, and preparing for stand-alone operation http://www.fast-project.org

Application of the FAST prototypes

- ◆ Install the FAST prototypes at Auger and TA for a study of systematic uncertainties and a cross calibration.
- ◆ Profile reconstruction with geometry given by surface detector array (1° in direction, 100 m in core location).
 - ♦ Energy: 10%, Xmax : 35 g/cm² at $10^{19.5}$ eV

igspace Independent check of Energy and X_{max} scale between Auger and TA

T. Fujii et al., Astropart. Phys., 74, pp64-72 (2016)

Pierre Auger Observatory

Auger collab., NIM-A (2010)

Data analysis and simulation study

FAST hybrid reconstruction

- ◆ Energy: 10%, Xmax: 35 g/cm² at 10^{19.5} eV
- ◆ Independent cross-check of energy and Xmax scale with simplified FD.

log(E(eV))

FAST reconstruction

57 EeV Simulation

- ◆ Fluorescence detector array with a 20 km spacing.
- ◆ Reconstruct geometry and profile

Data/MC comparison with vertical UV laser

Coincidence shower search between TA FD and FAST

- ♦ Data period: 2018/Oct/06 2019/Jan/14, 52 hours, **3 FAST prototypes**
- Event number: 236 (TA FD) -> 37 (significant signals with FAST, S/N > 6 σ , Δt > 500 ns)
 - ♦ The shower parameters are reconstructed by TA FD.

Coincidence showers between TA FD and FAST

Fluorescence detector Array of Single-pixel Telescopes

- ♦ Maximum detectable impact parameter, ~20 km at 10^{19.5} eV, with brighter signal showers
- ♦ 2 events above 10 EeV in 52 hours \rightarrow ~25 events/year (15% duty cycle)

Installation of 1st FAST prototype in Auger

Top-down reconstruction

Top-Down Reconstruction

-Using a χ^2 test to compare pulses bin-by-bin

Data Expected $(\theta, \varphi, x, y, E, X_{\text{max}})$

$$\chi^{2} = \sum_{\text{pixel } i \text{ time } t} \frac{(x(i, t)) - A\mu(i, t))^{2}}{\sigma_{\text{NSB}}^{2}(i) + A\sigma_{\text{signal}}^{2}(i, t)}$$

A is a scale factor for shower energy

DAQ system

power supply, N1470 CAEN

FAST Camera, PMT R5912-MOD (8 dynodes)

High voltage

Base E7694-01 (AC coupling),

HAMAMATSU

BLP-15+ LOW PASS FILTER

15 MHz low pass filter

Portable VME Electronics

- FADC 50 MHz sampling, SIS3350
- GPS board, Hytec GPS2092
- Single board PC, GE 7865

50x Amplifier Phillips Scientific 777

Real-time night sky monitoring

Calibrations for FAST

Absolute calibration in laboratory

15000 20000 25000

5000

YAP pulser (YAlO₃:Ce scintillator + ²⁴¹Am source) attached on each PMT surface

Wavelength [nm]

Ultraviolet LED illuminating the front of the camera

Work: Max Malacari, John Farmer, Dusan Mandat, Petr Hamal

wavelength [nm]

380

27

340

320

Filter transmittance measurement at site

Non-uniformity on PMT surface

By a courtesy of the IceCube group in Chiba University, especially thank to Dr. Yuya Makino

Signal detections from laser and showers

- ♦85 hour observation time
- ◆ Remote controlling observation
- ◆ Commissioning by self-trigger mode

A horizontal laser shot toward FAST telescope from 26 km away.

3U

Cherenkov dominated signals

Cosmic ray events (Cherenkov)

Work: Petr Hamal, Jiri Kvita

Results of energy spectrum, mass composition and anisotropy

arXiv:1808.03579

⇒ Need more statistic of ultrahigh energy cosmic rays (UHECRs)

Physics goal and future perspectives

Origin and nature of ultrahigh-energy cosmic rays (UHECRs) and particle interactions at the highest energies

5 - 10 years

Exposure and full sky coverage

TA×4 + Auger

K-EUSO: pioneer detection from space with an uniform exposure in northern/southern hemispheres

Detector R&D
Radio, SiPM,
Low-cost
fluorescence
detector

"Precision" measurements
AugerPrime
Low energy enhancement
(Auger infill+HEAT+AMIGA,
TALE+TA-muon+NICHE)
LHCf/RHICf for tuning models

10 - 15 years

Next generation observatories

In space (100×exposure): POEMMA

Ground (10×exposure with high quality events): FAST

Cherenkov dominated event (2 telescopes)

TA data

FAST data

FAST reconstruction:

Zenith Azimuth 59.8 deg -96.7 deg

Core(X) Core(Y) Xmax 7.9 km -9.0 km 842 g/cm²

Energy 17.3 EeV

Reconstructing the highest event

Top-Down Reconstruction

-Using a χ^2 test to compare pulses bin-by-bin

Data Expected $(\theta, \varphi, x, y, E, X_{\text{max}})$

$$\chi^{2} = \sum_{\text{pixel } i \text{ time } t} \frac{(x(i, t) - A\mu(i, t))^{2}}{\sigma_{\text{NSB}}^{2}(i) + A\sigma_{\text{signal}}^{2}(i, t)}$$

A is a scale factor for shower energy

