Latest Results from KASCADE-Grande

Donghwa Kang and Andreas Haungs* for the KASCADE-Grande Collaboration

*speaker PoS (ICRC2019) 306

36th ICRC July 24th – August 1st 2019 Madison, WI, U.S.A.

KArlsruhe Shower Core and Array DEtector + Grande

- 10 PeV 1 EeV
- 0.5 km²
- 37 stations (each 10 m²)

completed data acquisition at the end of 2013

The data from more than 20 years of measurements are now available for public use

- 100TeV 80PeV
- 252 scintillation detector stations
- Large number of observables

KASCADE-Grande: energy spectra of single mass groups

- → KASCADE: knee of light primaries at ~3·10¹⁵eV (He-dominant)
- → Hardening at 10¹⁶eV due to knee of medium primaries
- → KASCADE-Grande: knee of heavy primaries at ~9.10¹⁶ eV
- → heavy knee less distinct compared to light knee
- → mixed composition for 10¹⁵ to ~ 8·10¹⁷ eV
- → light ankle at 1-2-10¹⁷ eV
- → composition (relative abundancies) hadronic model dependent

Validity Tests of the Hadronic Interaction Model SIBYLL 2.3c Based on Shower Size

[D. Kang]
PoS (ICRC2019) 306

SIBYLL 2.3c

The latest version of SIBYLL, SIBYLL 2.3c, is developed by improving the model version 2.3 to obtain a better description of NA49 data

Prediction for extensive air showers:

- Similar to SIBYLL 2.3
- ~ 20 g/cm² deeper X_{max}
- ~ 50% more muons (all ground, E > 1GeV)

2-dim. shower size spectrum, along with proton and iron induced showers for QGSJET-II-04, EPOS-LHC, SIBYLL 2.3 and SIBYLL 2.3c simulations

Energy Calibration

Fit: $log_{10}E_{true} = p0 \cdot log_{10}N_{ch} + p1$

	HEAVY		LIGHT	
	p0	p 1	p0	p1
SIBYLL 2.3c	0.875	1.883	0.936	1.229
SIBYLL 2.3	0.897	1.764	0.927	1.321
SIBYLL 2.1	0.890	1.847	0.931	1.321

For same shower size SIBYLL 2.3c predicts slightly lower energy

Selecting Primary Mass Group

For same true energy SIBYLL 2.3c reconstructs a lighter mass

$$Y_{CIC} = Ig(N_{\mu,CF})^{CIC} / Ig(N_{ch})^{CIC}$$

	Y _{CIC}
SIBYLL 2.3c	0.845
SIBYLL 2.3	0.852
SIBYLL 2.1	0.840

Spectra of Individual Mass Groups

- Knee-like structure of heavy primaries below 10¹⁷ eV
- Hardening of light primaries is significant
- Estimation of systematic uncertainties is ongoing (expected to be about the order of 20%)

Spectra of Individual Mass Groups

- Difference between light and heavy primaries is large for SIBYLL 2.3c
- Knee-like structure of heavy primaries and hardening of light primaries are similar

Fit:

$$\Phi(E) = K \cdot E^{\gamma_1} \left[1 + \left(\frac{E}{E_K} \right)^{\varepsilon} \right]^{\frac{\gamma_2 - \gamma_1}{\varepsilon}}$$

electron-poor	lg(E _k /GeV)	γ ₁	γ ₂	Δγ	χ²/ndf
SIBYLL 2.1	7.75 ± 0.09	2.87 ± 0.03	3.15 ± 0.05	0.28	1.28
SIBYLL 2.3	7.71 ± 0.05	2.83 ± 0.01	3.18 ± 0.05	0.35	0.96
SIBYLL 2.3c	7.71 ± 0.05	2.89 ± 0.01	3.18 ± 0.04	0.29	1.05

Muon Contents in Air Showers between 10 PeV and 1 EeV Determined from Measurements with KASCADE-Grande

[J.C. Arteaga-Velazquez]
PoS (ICRC2019) 177
PS3-138

Comparison of model predictions and measured data, via the z-scale:

$$z = \frac{\ln(N_{\mu,det}) - \ln(N_{\mu,p})}{\ln(N_{\mu,Fe}) - \ln(N_{\mu,p})}$$

- The evolution of the mass composition shows a similar behaviour in all cases: a heavier mean mass at 100 PeV to lighter at 1 EeV
- An inconsistency with zenith angle is visible and increases with higher energy
- These muon studies are foreseen to be addressed in the working group report on the combined analysis of muon density measurements

Muon Attenuation Length

Attenuation length measured is different from the predictions of Monte Carlo

- → Observed evolution of the muon content of EAS in the atmosphere is not described by the hadronic interaction models
- → Effects absolute energy and mass scale, but not spectral features

Search for Large-scale Anisotropy in the Arrival Direction of Cosmic Rays with KASCADE-Grande

[A. Chiavassa] ApJ 870 (2019) 91 East-West method: allows to remove counting rate variations due to atmospheric and instrumental effects

Data from
December 2003 to
October 2011
(10⁷ events)

- θ < **40**°
- $-\log_{10}(Nch) > 5.2$

- Sidereal time variation of the number of counts obtained, in 20 minutes intervals, by applying the East-West method
- First harmonic fit → amplitude and phase values

- Significance of the amplitude of the first harmonic is 3.5 sigma
- Upper limits to the amplitude of the first harmonic obtained by KASCADE-Grande: $A \le 0.49 \times 10^{-2}$, $A \le 0.64 \times 10^{-2}$, $A \le 3.15 \times 10^{-2}$

Comparison of the first harmonic phase measured by KASCADE-Grande with other experimental results

This supports the hypothesis of a change of the phase of the first harmonic at energies greater than ~2×10¹⁴ eV

[ApJ 870 (2019) 91]

KASCADE Cosmic ray Data Centre https://kcdc.ikp.kit.edu/

[A. Haungs et al.]

PoS (ICRC2019) 284 PS1-170

KCDC

- KCDC (KASCADE Cosmic ray Data Centre)
 - = publishing research data from the KASCADE experiment

- Motivation and Idea of Open Data:
 - general public has to be able to access and use the data
 - the data has to be preserved for future generations
- Web portal:
 - provide a modern software solution
 - release the software as Open Source
 - educational examples
- Data access:
 - 4.3-108 EAS events
 - simulation data
 - energy spectra of other experiments
- Pioneering work in publishing research data

[Eur. Phys. J. C 78 (2018) 741]

To get spectra published with

various cosmic ray detectors

choose one of the 'Select-

Options', choose the format

A click inside the box where

the papers are displayed will

allow you to select the plots

Besides the data sets from

KASCADE and KASCADE-Grande you are offered a wide

range of data collected with other detectors measuring the

cosmic radiation in the energy range above 10¹⁴ eV.

A short table of spectra availabe can be found <u>here</u>

For details check the KCDC Manual

and download the data sets.

and press the 'Load' button.

Report a Bug

Education/Lehre

Spectra Selection page

Select-Option 1: choose spectra by Digital Object Identifier (DOI) DOI: Please, choose a DOI.... Load Select-Option 2: choose by detector (KASCADE, ...) Detector: KASCADE-Grande Load Choose format settings In GeV: In Log10: Scale: 0

KASCADE Cosmic Ray Data Centre (KCDC) / Open β

Detector	Journal	Issue	Year	Title
KASCADE- Grande	Proceedings of the 31st ICRC 2009	2009	2009	Cosmic ray energy spectrum based on shower size measurements of KASCADE-Grande
KASCADE- Grande	Thesis M.Finger	1	2011	Reconstruction of energy spectra for different mass groups of high-energy cosmic rays
KASCADE-	Physical	107	2011	Kneelike Structure in the Spectrum of the
Grande	Review Letters			Heavy Component of Cosmic Rays Observed with KASCADE-Grande
KASCADE- Grande	Phsical Review D	87	2013	Ankle-like feature in the energy spectrum of light elements of cosmic rays observed with KASCADE-Grande
KASCADE- Grande	Proceedings of the 34th ICRC	2015	2015	KASCADE-Grande energy spectrum of cosmic rays interpreted with post-LHC hadronic interaction models
KASCADE- Grande	Proceedings of the 35th ICRC	2017	2017	Measurements of the muon content of EAS in KASCADE-Grande compared with SIBYLL 2.3 predictions

Spectrum	Show	Save
KG_QGSjet-II-03_heavy	Show Data	Download Data
KG_QGSjet-II-03_light	Show Data	Download Data
KG_QGSjet-II-03_all	Show Data	Download Data

98 published energy spectra of other experiments!

Summary

- Validity test of the hadronic interaction model SIBYLL 2.3c: Total energy flux is slightly shifted
 - → spectral features are stable
- Test of the prediction on the shower muon content of the post-LHC hadronic interaction models
 - → model variations, problem already at 10¹⁶ eV
- Search for large-scale anisotropies in the arrival directions at energies higher than 10¹⁵ eV
 - → confirm phase transition 10¹⁶ 10¹⁷ eV
- Pioneering work for open data of astroparticle physics (KCDC)
 - → Towards a Global Data and Analysis Centre for Astroparticle Physics
- **→** KASCADE-Grande is still contributing to cosmic-ray science

