The Cosmic Ray Energy Spectrum above 2 PeV measured by the TALE Fluorescence Telescopes

JiHee Kim University of Utah for the Telescope Array Collaboration

36th International Cosmic Ray Conference - ICRC2019 University of Wisconsin-Madison, Madison, WI, USA

Outline

- Telescope Array Low Energy Extension (TALE) Fluorescence Detector
- Spectrum Data/MC Set (a progress report on an incomplete study)
 - MC simulations prioritized for composition study (T. AbuZayyad)
 - New preliminary Spectrum based on EPOS-LHC Conex
 - Affect missing energy correction and aperture calculation changes energy scale slightly
 - New QGSJETII-03 MC set corresponding to the full 2400 hr data (work in progress)
- Energy Spectra
 - ApJ published TALE energy spectrum (QGSJETII-03) with ~2 years of data
 - Updated TALE energy spectrum (EPOS-LHC) with ~ 4 years of data
- Summary

The Telescope Array Experiment (TA)

- Largest cosmic ray observatory in the northern hemisphere.
- Observes cosmic rays with energies greater than 10¹⁸ eV
- 3 telescope stations (•) overlooking an array of 507 scintillator surface detectors (•)
 - Black Rock fluorescence detector
 - Long Ridge fluorescence detector
 - Middle Drum fluorescence detector
- Central Laser Facility (+)

TA Low Energy Extension (TALE)

- 10 new telescopes looking higher in the sky (31-59° in elevation) at MDFD site
- 80 infill array surface detectors (o)
- Extends the sensitivity of TA down to 10^{15.3} eV

FoV of TALE telescopes FoV of MD telescopes

Spectrum Data/MC set

ApJ published TALE energy spectrum 2018

- Data: June 2014 March 2016
- On-time : ~ 1000 hours
- Good weather data:
 clear over head and no haze
- Fluorescence dominate events included
- MC: QGSJET II-03 with CONEX
- Four primaries : p, He, CNO, Fe
- Fit X_{max} distribution to four independent composition to determine primary fraction

Updated TALE energy spectrum

- Data: June 2014 November 2018
- On-time : ~ 2633 hours
- Good weather data:
 clear overhead and no haze
- Cherenkov light dominated events
- MC: EPOS-LHC with CONEX
- Four primaries : p, He, CNO, Fe
- Fit X_{max} distribution to four independent composition to determine primary fraction

Spectrum/Aperture Calculation (1/2)

Primary Mixture from X_{max} fit

- For each energy bin:
 - Fit X_{max} distribution to four independent elements : p, He, CNO, Fe
- Obtain primary fractions (composition assumption) for each hadronic interaction model.
- Result in difference in the overall normalization in the spectrum :
 - Aperture estimation
 - Missing energy correction

Spectrum/Aperture Calculation (2/2)

Missing Energy Correction

- Different missing energy corrections between QGSJET II-03 and EPOS-LHC hadronic models at the same energy
 - Each hadronic model has its own composition dependent missing energy correction
- Result in difference in the spectra
- Note that TA missing energy correction measurement agrees with QGSJETII-03 hadronic model.

Resolutions

Compare reconstructed values to thrown values.

Data Event Example

Cherenkov dominant event - one TALE telescope event

Event Display

Profile fit

Time vs Angle fit

Data/MC Comparisons

TALE Energy Spectrum (1/4)

June 2014 - November 2018

Using EPOS-LHC,

- primary fraction derived
- aperture calculated
- missing energy correction applied

TALE Energy Spectrum (2/4)

June 2014 - November 2018

Using EPOS-LHC,

- primary fraction derived
- aperture calculated
- missing energy correction applied

Broken power law fit

- 2nd knee at 10^{17.03} eV
- ankle-like feature at 10^{16.30} eV

TALE Energy Spectrum (3/4)

June 2014 - November 2018

Using EPOS-LHC,

- primary fraction derived
- aperture calculated
- missing energy correction applied

June 2014 - March 2016 ApJ published 2018 Using QGSJET II-03,

- primary fraction derived
- aperture calculated
- missing energy correction applied

TALE Energy Spectrum (4/4)

June 2014 - November 2018

Using EPOS-LHC,

- primary fraction derived
- aperture calculated
- missing energy correction applied

June 2014 - March 2016 ApJ published 2018 Using QGSJET II-03,

- primary fraction derived
- aperture calculated
- missing energy correction applied

Summary

- We presented a new preliminary measurement of the energy spectrum based on EPOS-LHC simulation
 - Resources (MC simulation) prioritized for composition study
 - Published spectrum (ApJ 2018) was based on QGSJETII-03
 - Affect the missing energy correction changes energy scale slightly 2.5%
 - Also affect the aperture calculation
 - Energy range in the measured spectrum: 10^{16} $10^{18.4}$ eV two features are observed
 - "ankle-like feature" a hardening of the spectrum at 1016.30 eV
 - "the second knee" a steepening of the spectrum at 1017.03 eV
- Work in progress: QGS simulations being calculated and fluorescence dominated events being added

Back Up Slide

The Telescope Array Experiment (TA)

"Reconstruction" of an air shower

Event Display showing pattern of hit pixels

Direction of hit pixels fitted to a shower-detector plane (SDP)

Timing Fit

Arrival times of signal light in each pixel is fitted as a function of the SDP θ angles: Gives direction of primary cosmic ray

$$t_i = t_0 + \frac{R_P}{c} \tan \frac{\theta_i}{2}$$

SDP θ angles converted to slant depth. Light signal fitted to depth to give energy E and Xmax (depth of maximum)

Spectrum/Aperture Calculation

Missing Energy Correction

