TALE hybrid

Shoichi OGIO (Osaka City University) for the Telescope Array collaboration

- TA and TALE
- TALE FD monocular spectrum
- TALE SD array
- Hybrid trigger, SD DAQ sequence
- Event reconstruction for real and MC data
- Future plan: lower energy
Telescope Array collaboration

147 collaborators from 36 institutes in 6 countries

(1) High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA, (2) The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan, (3) Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan, (4) Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea, (5) Department of Physics, Tokyo University of Science, Noda, Chiba, Japan, (6) Department of Physics, Kindai University, Higashiosaka, Osaka, Japan, (7) Service de Physique Théorique, Université Libre de Bruxelles, Brussels, Belgium, (8) The Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan, (9) Graduate School of Science, Osaka City University, Osaka, Osaka, Japan, (10) Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan, (11) Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba, Japan, (12) Information Engineering Graduate School of Science and Technology, Shinshu University, Nagano, Nagano, Japan, (13) Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan, (14) Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan, (15) Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan, (16) Academic Assembly School of Science and Technology Institute of Engineering, Shinshu University, Nagano, Nagano, Japan, (17) Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan, (18) Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea, (19) Department of Physics, Chiba University, Chiba, Japan, (20) Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia, (21) Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan, (22) Department of Engineering Science, Faculty of Engineering, Osaka Electro-Communication University, Neyagawa-cho, Osaka, Japan, (23) Department of Physics, Chiba University, Chiba, Japan, (24) Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan, Korea, (25) Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea, (26) Faculty of Science, Kochi University, Kochi, Japan, (27) Nambu Yosioho Institute of Theoretical and Experimental Physics, Osaka City University, Osaka, Japan, (28) Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan, (29) Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow, Russia, (30) Department of Physics and Astronomy, Rutgers University - The State University of New Jersey, Piscataway, New Jersey, USA, (31) Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan, (32) Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan, (33) National Institute of Radiological Science, Chiba, Japan, (34) CEICO, Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic, (35) Department of Physics and Institute for the Early Universe, Ewha Womans University, Seodaemun-gu, Seoul, Korea, (36) Department of Physics, Ehime University, Matsuyama, Ehime, Japan
Telescope Array (TA)

Millard county, Utah, USA, about 1400m a.s.l.

Surface Detector (SD) array:
507 scintillation detectors, 3m², 1.2km spacing
Total coverage ~ 700 km²
Fluorescence Detectors (FDs) in 3 stations
In total, 38 telescopes
observing the sky above the array
Operation from 2008

Middle Drum
5.2m² x 14
refurbished HiRes-I

Surface Detector (SD)
3 m² plastic scintillator
2 layers

Black Rock Mesa &
Long Ridge
6.8m² x 12 x 2
newly designed for TA
TALE FD

TALE FD station and TA MD are very close together
10 FDs in the TALE station
Elevation: 30°-57° (higher elevation than MD)
Azimuthal: 114°

Refurbished HiRes FDs
Mirror: same as TA FD (MD)
Elec.: 10 MHz 8bit FADC

Installed in Nov. 2012
Operation from Sep. 2013
Hybrid trigger out Sep. 2018
TALE-FD mono spectrum (2 yrs)

![Energy spectrum graph](image)

Breakpoint
- Break point 17.04 ± 0.03
- Break point 16.22 ± 0.02

Slope
- Slope: -3.12 ± 0.01
- Slope: -2.92 ± 0.01
- Slope: -3.19 ± 0.02

Fit
- $\chi^2 / \text{ndf} = 31.6 / 39$

Figure 20: TALE cosmic rays energy spectrum measured with 22 months of data. A mixed primary composition given by the TXF is assumed. The gray band indicates the size of the systematic uncertainties.

Figure 22: A comparison of the spectrum obtained with different compositions.

With respect to the energy spectrum for the case of pure iron composition assumption, note that composition measurements by other experiments, e.g. [48, 49], exclude the possibility of iron dominated flux at energies below 10^{16} eV. The spectrum is included in the plot simply to demonstrate the extreme case of all heavy primaries.

Figure 23: A comparison of the current result with some recent results from other experiments.

We note that qualitatively the spectra are in agreement. The difference in normalization is within the systematics of the energy scales of the different experiments. In particular, we note that a 6.5% downward shift in the IceTop energy scale, results in a spectrum that lies on top of the TALE spectrum for energies below 10^{17} eV.

Figure 24: A comparison of the current result with some recent results from TA Fluorescence [55] and surface detector [56] measurements.

We note that above 10^{17} eV there is excellent agreement between the different results, demonstrating that the TALE spectrum can be seen as an extension of the measurements in the ultra-high energy regime down to lower energies.
Compared to recent measurements

Figure 23: TALE cosmic rays energy spectrum plotted along with measurements by Yakutsk [50], TUNKA [51, 52], Kaskade-Grande [53], and IceTop [54].

Figure 24: TALE cosmic rays energy spectrum plotted along with measurements by TA using the FD’s at Black Rock and Long Ridge sites [55], and by the TA surface detector [56], also shown is the Auger spectrum [57] with a 10% energy scaling applied to make it agree with the TA SD flux.
Exposure depends on composition

arXiv: 1803.01288

TALE Energy spectrum (Monocular)

- blue: iron
- green: H4a + HiRes/MIA
- black: TXF
 (a mixed model which reproduces TALE-FD Xmax, used for previous page)
- red: proton
FD monocular \rightarrow FD + SD hybrid

ΔX_{max}:
FD mono: 40 g/cm2
\rightarrow FD + SD hybrid: 20 g/cm2
TALE hybrid

Low energy extension of TA sensitivity down to 10^{16}eV, with
FDs observing higher elevation
Densely-arrayed SDs
Precise measurement of the composition:
FD + SD hybrid measurement

TALE-FD: 10 telescopes (Sep. 2013 ~)
elevation: 30°~57°, azimuthal: 114°
TALE-SD array: 80 SDs (Feb. 2018 ~)
TALE-hybrid started running from Sep. 2018

Expected specifications of TALE hybrid
Threshold energy $E : \log E = 16.0$
Event rate: ~5,000 events/year
$\Delta \theta = 1.0^\circ$ (FD mono: 5.3°)
$\Delta X_{\text{max}} = 20$ g/cm2 (FD mono: 40 g/cm2)
TALE SD array

New PMT (Hamamatsu R8619)
• QE ~ 20% @ 500nm (TA: ~10%)
• Linear range max @ ~ 50mA (TA: ~ 25mA)
• Photo-cathode uniformity

→ reduce total length of WLSF ~ 33% of TA
TALE SD array

80 SDs covering 30km²
Running from Feb. 2018
of living SD ~ 80
DAQ bug fixed at Apr. 2018

Triggering conditions:
Storing waveform in SD: > 0.3 MIP (750Hz/SD)
Hit: > 3 MIPs (20Hz/SD)
Air shower event: 5 hit SDs in 8us window
(3/10min)

Status plot (Jan. 2018 -)
TALE Hybrid

Hybrid triggering condition: DAQ installed Sep. 2018

- # of hit PMT > 5 &
- Event duration > 500 ns

Hybrid triggering rate ~ 0.05Hz

Central DAQ Host PC

① FD event trigger

② Request SDs to record waveform with FD event time info.

③ request

④ send waveform > 0.3 MIP

DAQ sequence (time chart) in the host PC

Check hybrid triggers from the TALE FD, and request all the SDs to send waveforms

Correct Level 1 trigger info. from all the SDs

Level 2 trigger decision

Correct waveforms from Level 0 triggered SDs
Hybrid triggering condition: DAQ installed Sep. 2018
- # of hit PMT > 5 &
- Event duration > 500 ns
Hybrid triggering rate ~ 0.05Hz

Hybrid trigger information, “13fb0511” means:
13f(HEX)=319(DEC) in sec,
b0511(HEX)=722193(DEC) in usec, so then
“13fb0511”=319.722193 s

Current hybrid trigger rate ~ 0.026 Hz
TALE Hybrid

Hybrid triggering condition: DAQ installed Sep. 2018
- # of hit PMT > 5 &
- Event duration > 500 ns

Hybrid triggering rate ~ 0.05Hz

1. FD event trigger
2. Request SDs to record waveform with FD event time info.
3. Request
4. Send waveform > 0.3 MIP

Central DAQ
Host PC

DAQ sequence (time chart) in the host PC

Check hybrid triggers from the TALE FD, and request all the SDs to send waveforms

Correct Lv. 1 trigger info. from all the SDs
L. 2 trigger decision
Correct waveforms from L. 0 triggered SDs
TALE Hybrid: real event sample

Real hybrid event samples in Nov. 7, 2018

2018/11/07 10:01:30.122752

2018/11/07 11:46:15.622352
TALE Hybrid: real event sample

Real hybrid event samples in Nov. 7, 2018

<table>
<thead>
<tr>
<th>Zen.[deg]</th>
<th>Azi.[deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.6</td>
<td>-33.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CoreX[km]</th>
<th>CoreY[km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.33</td>
<td>17.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Xmax[g/cm²]</th>
<th>E[eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>823</td>
<td>$10^{17.94}$</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Results</th>
<th>Zen.[deg]</th>
<th>Azi.[deg]</th>
<th>Rp[km]</th>
<th>ψ [deg]</th>
<th>CoreX[km]</th>
<th>CoreY[km]</th>
<th>X_{max} [g/cm2]</th>
<th>E_0 [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>thrown</td>
<td>21.6</td>
<td>-65.8</td>
<td>2.33</td>
<td>71.6</td>
<td>-5.86</td>
<td>17.51</td>
<td>734</td>
<td>$10^{17.89}$</td>
</tr>
<tr>
<td>hybrid</td>
<td>21.7</td>
<td>-66.3</td>
<td>2.32</td>
<td>71.8</td>
<td>-5.89</td>
<td>17.50</td>
<td>737</td>
<td>$10^{17.83}$</td>
</tr>
<tr>
<td>mono</td>
<td>20.5</td>
<td>-68.7</td>
<td>2.35</td>
<td>73.3</td>
<td>-5.88</td>
<td>17.49</td>
<td>725</td>
<td>$10^{17.83}$</td>
</tr>
</tbody>
</table>
TALE Hybrid: MC event sample

<table>
<thead>
<tr>
<th>Results</th>
<th>Zen [deg]</th>
<th>Azi [deg]</th>
<th>Rp [km]</th>
<th>ψ [deg]</th>
<th>CoreX [km]</th>
<th>CoreY [km]</th>
<th>X_{Lmax} [g/cm²]</th>
<th>E_0 [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>thrown</td>
<td>40.7</td>
<td>52.7</td>
<td>1.78</td>
<td>67.3</td>
<td>-7.46</td>
<td>17.51</td>
<td>781</td>
<td>$10^{17.94}$</td>
</tr>
<tr>
<td>hybrid</td>
<td>41.8</td>
<td>51.1</td>
<td>1.74</td>
<td>65.0</td>
<td>-7.51</td>
<td>17.51</td>
<td>789</td>
<td>$10^{17.89}$</td>
</tr>
<tr>
<td>mono</td>
<td>38.2</td>
<td>61.4</td>
<td>1.85</td>
<td>72.6</td>
<td>-7.51</td>
<td>17.52</td>
<td>743</td>
<td>$10^{17.85}$</td>
</tr>
</tbody>
</table>
TALE Hybrid: MC event sample

<table>
<thead>
<tr>
<th>Results</th>
<th>Zen.[deg]</th>
<th>Azi.[deg]</th>
<th>Rp[km]</th>
<th>ψ [deg]</th>
<th>CoreX[km]</th>
<th>CoreY[km]</th>
<th>X_{max} [g/cm2]</th>
<th>E_0 [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>thrown</td>
<td>33.0</td>
<td>112.4</td>
<td>3.03</td>
<td>109.3</td>
<td>-6.66</td>
<td>16.46</td>
<td>689</td>
<td>$10^{17.88}$</td>
</tr>
<tr>
<td>hybrid</td>
<td>32.1</td>
<td>109.1</td>
<td>3.14</td>
<td>106.9</td>
<td>-6.68</td>
<td>16.38</td>
<td>676</td>
<td>$10^{17.82}$</td>
</tr>
<tr>
<td>mono</td>
<td>52.1</td>
<td>142.0</td>
<td>3.35</td>
<td>136.2</td>
<td>-6.35</td>
<td>15.04</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
TALE future plan: lower energy

Additionally install 50 SDs with 200m spacing near the TALE FD station (< 2km), to archive lower the threshold energy:

for SD, $E_{\text{mode}} = 10^{15.5} \text{ eV}$

for FD-SD hybrid, $E_{\text{mode}} = 10^{16.3} \text{ eV}$

1.5M$ for 5yrs approved by JSPS in 2019
Summary

TALE hybrid in operation since 2018
• 80 SDs with 400 m, 600 m spacing in stalled in Feb. 2018
• SD event rate is 0.005 Hz
• Hybrid rate is 0.05 Hz

Go down lower energy with additional 50 SDs
• approved by JSPS for 1.5 M$