

Recent Gamma-ray Results from DAMPE

ICRC 2019 36th International Cosmic Ray Conference Mathematica With USA THE ASTROPARTICLE PHYSICS CONFERENCE

Lind Contraction And Contraction And Contraction And Contraction And Contraction And Contraction And Contraction 07/29/2019

th ICRC, Madison WI, U.S

Outline

- Introduction of DAMPE
- Fundamental works for gamma-rays
- Scientific results for gamma-rays
- summary

DArk Matter Particle Explorer

Proposed:2005Founded:23 Dec.Launched:17 Dec.2015

Orbit: Sun-synchronous Altitude: ~500 km

Data rate: ~5M events/day Total: ~6.5G all-particle events up to now

Scientific objectives:
(a)Probing the nature of dark matter
(b)Understanding acceleration and propagation of cosmic rays
(c)Studying γ-ray emission from Galactic and extragalactic sources

The payload

- Charge measurement (dE/dx in PSD, STK and BGO)
- Pair production and tracking (STK and BGO)
- Precise energy measurement (BGO bars)
- Hadron rejection (BGO and NUD)

The rare gamma-rays in the cosmic rays

See Xu et al., 2018, RAA, 18, 27 for details

Fundamental works: IRFs

- Instrument response functions (IRFs) are the parameterized representations of the instrument performance, and they are dependent on the algorithm of gamma-ray selection.
- The IRFs of DAMPE are factorized into three parts: (a) the effective area, (b) the point-spread function (PSF) and (c) the energy dispersion function.

See Duan et al. [arXiv: 1904.13098] for details

Overall performance

Energy Range	2 GeV - 10 TeV
Field of View	~ 1 sr
Effective Area (normal incidence)	~ 1200 cm^2 @ 100 GeV
Angular Resolution (normal incidence)	0.1°@ 100GeV
Energy Dispersion (normal incidence)	~1% @ 100 GeV

Data collected in the first three years

- Six full-sky scans
- ~0.2M photons (>2GeV)

Bright gamma-ray source list

- Blind search for all-sky bright sources
- Events from 2 GeV to 2 TeV
- TS map within 0.1° pixels

Bright gamma-ray source list

• Sensitivity of source detection for 3 years

Integral flux sensitivity

Broadband sensitivity Galactic center, intermediate latitudes, north Galactic pole, and north Celestial pole

See Shen et al. [PS1-256(ICRC2019)] for details

Galaxy clusters

See Shen et al. [PS1-256(ICRC2019)] for details

See Shen et al. [PS1-256(ICRC2019)] for details

Pulsars

Obtained from: https://apod.nasa.gov/apod/ap180317.html

See Muñoz et al. [GAD2d(ICRC2019)] for details

GeV variable AGNs

See ATel #9901, #11246, #12562, #12705 for details

Summary

- More than three years' sky-survey observation
- All-sky blind search with 3-year data above 2 GeV reveals 143 bright sources with TS > 20.
- No statistically significant line is identified between 10 GeV and 300 GeV and upper limits of <σv> are obtained.
- Further analyses are being carried, along with more data collected as well.

Thanks for your attention!