

Estimating the Depth of Shower Maximum using the Surface Detectors of the Pierre Auger Observatory

C.J. Todero Peixoto⁺, for the Pierre Auger Collaboration*

- + Escola de Engenharia de Lorena, Universidade de São Paulo
- * Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

e-mail: auger_spokespersons@fnal.gov

Full author list: http://www.auger.org/archive/authors_icrc_2019.html

36th International Cosmic Ray Conference

Surface Detectors of Auger Observatory

Water-Cherenkov arrays

- 1500 m spacing; 1600 detectors; (3000 km²)
- 750 m spacing; 60 detectors; (23.5 km^2)

Record a mix of electromagnetic and muonic signals with the muonic signals dominant at large distances

Simulations

 $E = 19.4 EeV, \theta = 43^{\circ}$

The Δ -method in a nutshell

- Measure risetime (t_{1/2}) for every water-Cherenkov detector
- "Benchmark": Describe risetimes as a function of distance for a narrow energy range
 - 1500 m array: 19.1≤ log₁₀ (E/eV)≤19.2
 - 750 m array: 17.7≤ log₁₀ (E/eV)≤17.8
- Characterize every shower by <u>a single</u> <u>parameter</u>: ∆_s
- Golden-hybrid events (<u>data-driven</u> analysis): $X_{max}(FD) = f(\Delta_s)$
- Estimate $X_{max}(SD)$

Updated analysis

	<u>Published analysis</u> (Phys.Rev. D96 (2017) no.12, 122003)	<u>New analysis</u>
Data taking period	January, 1 2004 Dec, 31 2014	January, 1 2004 August, 31 2018
Energy range	0.3-100 EeV	3-100 EeV
Zenith angle range	< 45 degrees	< 60 degrees
Total number of events (1500m array)	58,583	125,005 (factor 2.1 bigger)
Events with E>20 EeV	1,586	3,372 (factor 2.1 bigger)
Events with E>70 EeV	49	106 (factor 2.1 bigger)

Benchmark (1500 m array)

 Fit FADC traces from low-gain channel (A, B free parameters)

$$t_{1/2}^{ ext{low-gain trace}} = 40 \text{ns} + \sqrt{A(\theta)^2 + B(\theta)^2} - A(\theta)$$

 Fit FADC traces from high-gain channel (only N is a free parameter)

$$t_{1/2}^{\text{high-gain trace}} = 40 \text{ns} + N\left(\theta\right) \cdot \left(\sqrt{A(\theta)^2 + B(\theta)^2} - A(\theta)\right)$$

Split parameterisations in two angular bins

 $\sec \theta < 1.45$

1. **45** < $\sec \theta$ < 2.0

Δ_s at benchmark energy

$$19.1 \le log_{10} (E/eV) \le 19.2$$

$$\sec \theta \leq 2$$

$\langle \Delta_s \rangle$ vs Energy: Comparison with published analysis

$\langle \Delta_s \rangle$ vs Energy: Comparison with models

$\langle \ln {\rm A} \rangle$ from $\langle \Delta_{\rm S} \rangle$ compared to results from fluorescence measurements

Use models to convert measurements to (In A)

- Simulations do not describe properly the signals recorded by Surface Detectors [Muon Problem adressed in PoS(ICRC2019)214,404,411]
- To estimate mass composition, data from Surface Detectors must be calibrated with fluorescence measurements

Calibration with X_{max}

• Use golden hybrids (events simultaneously reconstructed by SD and FD)

Evolution of $(X_{max})^{SD}$ as a function of energy

Preponderance of intermediate/heavy nuclei as energy increases

12

Thank you for your attention

Backup

The rate of change of mass composition varies with energy