Future proton-oxygen beam collisions at the LHC for air shower physics

Hans Dembinskia, Ralf Ulrichb, Tanguy Pierogb

aMax Planck Institute for Nuclear Physics, Heidelberg, Germany
bKarlsruhe Institute of Technology, Karlsruhe, Germany

PoS(ICRC2019)235
Take-home message

- p-O and O-O collisions at LHC planned for 2023
 - 1 week of data taking to collect 2 nb$^{-1}$
 - Support from ATLAS, CMS, ALICE; strong support from LHCf and LHCb

- Primary motivation from understanding cosmic-ray induced air showers and solving *Muon Puzzle*
 - Solve Muon Puzzle by measuring **energy fraction** carried by π^0
 - Measure **nuclear effects** in light ion collisions
 - Measuring **rapidity spectra** and improve accuracy of depth of shower maximum predictions to better than 10 %
Motivation

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

Astrophysical origins of cosmic rays?
- Mass composition \(<\ln A\>) carries imprint of sources & propagation, inferred from \(X_{\text{max}}\) & \(N_{\mu}\)
- Accuracy of \(<\ln A\>) limited by hadronic interaction generators used in air shower simulations (achievable is 10% of p-Fe distance)
- Muon Puzzle: 8σ discrepancy between air shower simulations and data from 8 experiments
- LHC can simulate first interaction of 50 PeV air shower with p-O collision at \(\sqrt{s} = 10\) TeV

\[X_{\text{max}}\] depth of shower maximum
\[N_{\mu}\] number of muons in shower

8σ Muon Puzzle, see L. Cazon et al. PoS(ICRC2019)214

Impact of hadronic interactions

R. Ulrich, R. Engel, M. Unger, PRD 83 (2011) 054026

Ad-hoc modify features at LHC energy scale with factor $f_{\text{LHC-pO}}$ and extrapolate up to 10^{19} eV proton shower

Modified features

- **cross-section**: inelastic cross-section of all interactions
- **hadron multiplicity**: total number of secondary hadrons
- **elasticity**: $E_{\text{leading}}/E_{\text{total}}$ (lab frame)
- **π^0 fraction**: (no. of π^0) / (all pions)
Impact of hadronic interactions

- X_{max} sensitive to
 - inelastic cross-section (*very sensitive*)
 - High-precision measurements from LHC, see e.g. *LHCb collab. JHEP 1806 (2018) 100* and refs. therein
 - hadron multiplicity
- N_μ sensitive to
 - π^0 fraction (*very sensitive*)
 - hadron multiplicity
Impact of LHC measurements

- Need to reduce π^0 fraction to solve the Muon Puzzle or rather R
- Measure hadron multiplicity to improve X_{max} and N_μ predictions
- Expected: nuclear modification of forward-produced hadrons

$$R = \frac{E_{\pi^0}}{E_{\text{other hadrons}}}$$

Lines: EPOS-LHC

- $E = 10^{19}$ eV
- $\langle \ln N_\mu \rangle - \ln N_\mu^{\text{Ref}}$

Graphs:
- Pseudorapidity η
- Hadron multiplicity N_{had}
- X_{max} and N_μ

Based on:
- Ulrich et al., PRD 83 (2011) 054026
- Auger: PRD 91 (2015) 032003

References:
- ALICE Xe-Xe arXiv:1807.09061;
- ATLAS Pb-Pb arXiv:1504.04337;
- CMS p-Pb arXiv:1710.09355v2;
- CMS p-p arXiv:1507.05915v2;
- LHCb p-p arXiv:1402.4430
Possibilities to reduce R

\[N_{\pi \text{-charged}} = 2N_{\pi \text{-neutral}} \text{ (isospin symmetry), but } \pi/\text{hadron ratio not fixed} \]

Collective effects may reduce pion fraction, EPOS-LHC predicts drop in R at \(\eta = 0 \)

Also see T. Pierog et al. PoS(ICRC2019)387

Strangeness production in p-O underestimated?

Enhancement of strangeness production observed in central collisions in pp and p-Pb

R in pp at \(5.2 < |\eta| < 6.6 \) higher than in models

Also see S. Baur et al. PoS(ICRC2019)188
Nuclear modification uncertainties

- Simulation of pions, kaons, protons spectra with CRMC [https://web.ikp.kit.edu/rulrich/crmc.html]
- Model spread of EPOS-LHC, QGSJet-II.04, SIBYLL-2.3 for pions, kaons, protons

Models mostly tuned to pp data at $|\eta| < 2$, model spread pp 10%, p-O 50%
Proton-Oxygen at the LHC

Section 11.3 by HD, R. Ulrich, T. Pierog et al. with p-O science case
Proposed run schedule

<table>
<thead>
<tr>
<th>Year</th>
<th>Systems, $\sqrt{s_{NN}}$</th>
<th>Time</th>
<th>L_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>Pb–Pb 5.5 TeV, pp 5.5 TeV</td>
<td>3 weeks</td>
<td>2.3 nb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 week</td>
<td>3 pb$^{-1}$ (ALICE), 300 pb$^{-1}$ (ATLAS, CMS), 25 pb$^{-1}$ (LHCb)</td>
</tr>
<tr>
<td>2022</td>
<td>Pb–Pb 5.5 TeV, O–O, p–O</td>
<td>5 weeks</td>
<td>3.9 nb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 week</td>
<td>500 µb$^{-1}$ and 200 µb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>Pb–Pb 8.8 TeV, pp 8.8 TeV</td>
<td>3 weeks</td>
<td>0.6 pb$^{-1}$ (ATLAS, CMS), 0.3 pb$^{-1}$ (ALICE, LHCb)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>few days</td>
<td>1.5 pb$^{-1}$ (ALICE), 100 pb$^{-1}$ (ATLAS, CMS, LHCb)</td>
</tr>
<tr>
<td>2027</td>
<td>Pb–Pb 5.5 TeV, pp 5.5 TeV</td>
<td>5 weeks</td>
<td>3.8 nb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 week</td>
<td>3 pb$^{-1}$ (ALICE), 300 pb$^{-1}$ (ATLAS, CMS), 25 pb$^{-1}$ (LHCb)</td>
</tr>
<tr>
<td>2028</td>
<td>Pb–Pb 8.8 TeV, pp 8.8 TeV</td>
<td>3 weeks</td>
<td>0.6 pb$^{-1}$ (ATLAS, CMS), 0.3 pb$^{-1}$ (ALICE, LHCb)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>few days</td>
<td>1.5 pb$^{-1}$ (ALICE), 100 pb$^{-1}$ (ATLAS, CMS, LHCb)</td>
</tr>
<tr>
<td>2029</td>
<td>Pb–Pb 5.5 TeV</td>
<td>4 weeks</td>
<td>3 nb$^{-1}$</td>
</tr>
<tr>
<td>Run-5</td>
<td>Intermediate AA pp reference</td>
<td>11 weeks</td>
<td>e.g. Ar–Ar 3–9 pb$^{-1}$ (optimal species to be defined)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 week</td>
<td></td>
</tr>
</tbody>
</table>

- Latest plans moved data taking to 2023
- 200 µb$^{-1}$ is enough statistics to push statistical error below 5 % in LHCb
- 2 nb$^{-1}$ (10 x minimum) will be requested, also allows to measure charm
Summary

• p-O and O-O collisions at LHC planned for 2023
 – 1 week of data taking to collect 2nb^{-1}
 – Support from ATLAS, CMS, ALICE; strong support from LHCf and LHCb

• Primary motivation from cosmic-ray induced air showers
 – Potentially solve Muon Puzzle by measuring π^0 energy fraction
 – Clarify size of nuclear effects in light ion collisions
 – Measure rapidity spectra to achieve X_{max} accuracy better than 10 gcm$^{-2}$

• Proposed measurements at the LHC
 – ATLAS & CMS (no PID): measure separately energy flows in ECal, HCal
 – ALICE, LHCb (has PID): measure identified rapidity spectra of π, K, p
 – LHCf: measure π^0 and neutrons in very forward
Outlook

• π-O interactions with **forward neutron tagging**?
 – Need to tag "single diffractive" events with isolated neutron
 – Model-dependent pre-evolution (pomeron interactions of p-O)

• CORSIKA 8
 – Successor of CORSIKA 7 in modular C++
 – **Unified** tool to simulate air showers and LHC events
 – Allow for **ad hoc tuning** of generator output
 – See Posters 30-31 Jul, **Great Hall, 4th Floor**
 \[D. Baack PS3-142, HD PS3-157, M. Reininghaus PS3-206 \]

• Bonus problem: simulations of **100 GeV air showers** very uncertain
 – Large discrepancies in muon & electron LDF found in 100 GeV showers
 \[H. Schoorlemmer, A. Pastor, R.D. Parsons, PoS(ICRC2019)417; \]
 also see \[arXiv:1904.0513 \] (accepted by PRD)
 – Potential to measure muon LDF of 100 GeV showers with CTA
 \[A.M.W. Mitchell, HD, R.D. Parsons, PoS(ICRC2019)351; \]
 also see \[Astropart. Phys. 111 (2019) 23 \]
Nuclear effects in prompt J/ψ production

Up to 50% suppression in forward direction
Especially strong where relevant for CR!
Similar effects expected in pion production

- Model lines parallel, because of approx. superposition
- Model line offsets from nuclear effects (forward effects)

Only need to measure pO, not FeO!

LHCb collab.
LHC and data on pion production

- Most common interaction in air shower is π-N, use p-O as proxy
- Need more data on light hadron production in forward direction
- Do properties scale from pp to p-O to p-Pb or different regimes?
LDF spread

- CORSIKA simulations
 - 100 GeV to 100 TeV
 - UrQMD for E < 80 GeV
 - Varying high-energy model

- Huge discrepancies in $e\gamma$-LDF and μ-LDF in 100 GeV showers

- Correlated effects in LDFs
 - QGSJet-II.04 high
 - UrQMD low