

Follow-Up Results on Jet Interaction Regions of SS 433 Using Data from HAWC

Chang Dong Rho & Hao Zhou

Overview

- Introduction to HAWC.
- SS 433 results recap (1,017 days).
- Theoretical interpretation.
- New follow-up SS 433 results (1,038 days; new energy estimator).

SS 433 – Other Experiments

 Known microquasar in radio / Xrays.

 Jets terminate in nebula W 50, producing X-ray lobes (east and west).

 IACTs: no observation of VHE γray emission. Upper limits computed.

HAWC – SS 433 in 1017d of Data

- HAWC sees two hot spots, spatially in coincidence with X-ray contours.
- Two SS 433 lobes & J1908 fitted simultaneously.
- Semi-circular Rol to reduce contamination from GDE.

HAWC – SS 433 in 1017d of Data

- Used nested models to separate the emission of lobes from J1908.
- Hotspots outside the Rol can be ignored (Galactic Plane).
- The pre-trial significance distribution shows improvement after subtraction.

HAWC - SS 433 in 1017d of Data

ne

nored

on ion.

HAWC - SS 433 in 1017d of Data

- Residual significance distribution is zero-mean Gaussian, consistent with background-only distribution.
- "The nested fit of east and west lobes gives 5.4σ post-trial with HAWC's 1,017 days of dataset at e1 and w1".

Key Issues

This is the first time astrophysical jets have been spatially resolved at such high energies. But there still are questions:

- \triangleright Composition and spectrum of the particles generating the gamma rays: hadronic (π^0 decay) or leptonic (IC) origin?
- > Acceleration site: near binary or jet interaction regions?
- > Acceleration mech.: magnetic fields or standing shocks?

Broadband Spectral Energy Distrib. of e1

- Leptonic: TeV γ rays observed by HAWC are produced via IC of CMB by the same e⁻.
- Multiwavelength spectral fit (solid + dashed line) of leptonic scenario assumes

$$\frac{dN}{dE} \propto E^{-\alpha} \exp(\frac{-E}{E}),$$

in a magnetic field B for an injected flux of electrons. We inferred $E_{max} > 1$ PeV.

Key Points

- Leptonic model does a good job of explaining the gamma ray emission, requires ~0.03% of jet power -> electron acceleration.
- HAWC observation disfavors hadronic-only scenario because:
 - 1. Hadronic-only scenario can hardly meet the energy budget; ~100% of jet energy -> accelerating protons to explain the observed gamma-ray emission.
 - 2. Protons should have spread to a few degrees before emitting gamma rays.
- Acceleration is occurring at the jet interaction, not in the central binary:
 - 1. Emission region is ~40 pc from central binary.
 - 2. Diffusion length scale is ~35 pc at these energies, assuming ISM diffusion coefficient (which may be much too large in this region).
 - 3. Advection length scale for electrons is ~4 pc.

Acceleration Mechanism

How does SS 433 produce ~ PeV electrons?

- Acceleration in magnetic fields:
 Possible up to a few hundred TeV. Above that, acceleration time exceeds synchrotron cooling time for 16 µG fields.
- Acceleration in standing shocks (Fermi acceleration):
 Can reach PeV energies. But, no multiwavelength evidence for large shocks in the interaction regions.
- Explaining the emission from SS 433 is a challenge for current acceleration models!

HAWC – SS 433 Energy Estimator (1,038d)

- Same analysis as 1,017 days.
- Both J1908 and the SS 433 lobes show much weaker significance.
- On-array vs. on+off-array.
- West lobe looks more independent.

HAWC – SS 433 Energy Estimator (1,038d)

- Used nested models to separate the emission of lobes from J1908.
- Hotspots outside the Rol once again (Galactic Plane).
- Lobes are still there. Stronger west lobe but weaker east lobe.

HAWC – SS 433 Energy Estimator (1,038d)

- Residual map after subtracting the lobes as well as J1908.
- Residual significance distribution is still consistent with background.

Summary

- 1,017 day data published with Nature (Oct, 2018).
- Consistent with leptonic model with acceleration occurring at jet interaction region; acceleration mechanism not clear; hadronic model not completely ruled out.
- Follow-up results show reduced signif. for SS 433 lobes due to on-array only events vs. on+off-array events.
- With more data, we will find spectral constraints.

Reference

- 1. P. T. Goodall, F Alouani-Bibi, and K. M. Blundell. "When microquasar jets and supernova collide: hydrodynamically simulating the SS 433-W 50 interaction". Mon. Not. Roy. Astron. Soc., 414:2838–2859, jul 2011.
- 2. A. U. Abeysekara et al. "Very high energy particle acceleration powered by the jets of the microquasar SS 433". Nature, 562:82–85, 2018.
- 8. Mirabel, I. F., 2006, Science, 312, 1759
- 4. B. J. Geldzahler, T. Pauls, and C. J. Salter. "Continuum observations of the supernova remnants W 50 and G 74.9 + 1.2 at 2695 MHz". Astron. Astrophys., 84:237–244, apr 1980.
- Astrophys., 64.237–244, apr 1960.
 W. Brinkmann, G. W. Pratt, S. Rohr, N. Kawai, and V. Burwitz. XMM-Newton observations of the eastern jet of SS433. Astron. Astrophys., 463:611–620, 2007.

Reference

 S. Safi-Harb and R. Petre. Rossi X-Ray Timing Explorer Observations of the Eastern Lobe of W50 Associated with SS 433. Astrophys. J., 512:784– 792, feb 1999.
 "Constraints on Particle Acceleration in SS433/W50 from MAGIC and

H.E.S.S. Observations", Ahnen, M. L. et al., 2018, Astron. Astrophys. 612,

- A14
 10. "VERITAS Observations of High-Mass X-Ray Binary SS 433", Kar, P. et al., 2017, Proceeding for ICRC 2017
- 11. "ROSAT observations of the W 50/SS 433 system", Brinkmann, W., Aschenbach, B. & Kawai, N., 1996, Astron. Astrophys. 312, 306–316
- 12. McGarvey, K., "Catching some gamma rays in central Mexico"
- 13. "IRAS observations of SS 433 and W50", Band, D. L., 1987, Pub. Astron. Soc. Pacific 99, 1269

Back up

SS 433 – HAWC

HAWC: Extended elliptical hotspot around location of SS 433 in 17 month data.

HAWC obs. interesting because searches for γ-ray emission from hotspots between 100 GeV and 10 TeV gave no detection.

Fit Results fhit vs. ee

Lobe	Position	dN/dE at 20 TeV	TS
	(RA, Dec)	$[10^{-16} \text{TeV}^{-1} \text{cm}^{-2} \text{s}^{-1}]$	
Fractional hit bin results (published results).			
e1	19:13:37 04°55'48"	$2.4^{+0.6+1.3}_{-0.5-1.3}$	41.2
w1	19:10:37 05°02'13"	$2.1^{+0.6+1.2}_{-0.5-1.2}$	
Energy estimator (ground parameter; on-array only).			
e1	19:13:37 04°55'48"	$2.5^{+1.1}_{-0.8}$	30.0
w1	19:10:37 05°02'13"	$-3.5^{+1.2}_{-0.9}$	

Precession & Central Engine

- HAWC does not see jet precession. Even in an ideal low-density environment where the jets precess without any disruption, the phase should be lost by ~0.04 pc (Also the lobes are too fat!).
- Central binary:
 - No significant VHE gamma-ray emission from the central binary.
 - No periodic modulation in flux observed from the central engine.
- Therefore, SS 433 is not really a "gamma-ray binary". It is a very special case!