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A precision, multipurpose, up to TeV spectrometer
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In the e+, e- measurement, the key requirements of the 
detector/experiment are: 

Key requirements
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In the e+, e- measurement, the key requirements of the 
detector/experiment are: 

• rejection of the large background (mainly protons, p/e ~ 102): 
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Redundancy and Complementarity!
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Thanks to the different energy deposits of light and heavy 
particles, the TRD is capable to achieve an e/p separation up to 104

20 layers of TRD ISS Data
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e/p separation: TRD
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Exploring the shower topological differences between hadronic and 
electromagnetic particles, is possible to obtain an e/p separation up 

to 105

electrons

protons

17 X0 3D-imaging ECAL ISS Data
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e/p separation: ECAL
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Comparing the Energy measurement by the ECAL to the Rigidity one by the 
Tracker is possible to discriminate electromagnetic and hadronic particles.

Given the natural abundances of p+, p-, e- and e+, even a selection only based on 
the sign of the Rigidity is possible to obtain quite pure sample of p+ and e-
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e/p separation: Tracker+ECAL
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e/p separation: redundancy and complementarity
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Solar modulation and e+,e-
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1. Large time scale effects (~years):
• change on intensity of CRs
• charge-sign dependence:

o at maximum: diffusive motion
o at minimum: magnetic drift + diffusive motion

2. Small time scale effects (~days)
Forbush decrease & Solar Energetic
Particles (SEP)

Heliosphere

galactic
cosmic
rays

B~0.3µG

B>0.3µG

Solar modulation of Cosmic Rays
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Solar modulation of Cosmic Rays

The AMS results on the electron spectrum together with
earlier measurements [24,29–34] are shown in Fig. 2(a).
The AMS results significantly improve the precision and
extend the measurements to the uncharted high energy
region. The positron fraction results together with earlier
measurements [24,29–34] are presented in Fig. 2(b). The
sum of the electron and positron [4] spectra is compared to
the recent measurements of the combined electron and
positron spectrum [35–39] in Fig. 2(c).
To examine the energy dependence of the electron flux in

a model-independent way, the flux spectral index γ is
calculated from

γ ¼ d½logðΦÞ%=d½logðEÞ%; ð2Þ

over nonoverlapping energy intervals which are chosen to
have sufficient sensitivity to the spectral index. The energy
interval boundaries are 3.36, 5.00, 7.10, 10.32, 17.98,
27.25, 55.58, 90.19, 148.81, 370, and 1400 GeV. The
results are presented in Fig. 3(a) together with the positron
results [4]. They are stable against the variation of energy
range boundaries as verified by shifting the boundaries to
higher and lower values by one or two energy bins (see
Fig. S8 of the Supplemental Material [21]). As seen in
Fig. 3(a), both the electron and positron indices decrease
(soften) rapidly with energy below ∼10 GeV, and then they
both start increasing (harden) at > 20 GeV. In particular,
the electron spectral index increases from γ ¼ −3.295 &
0.026 in the energy range [17.98–27.25] GeV to an average
γ ¼ −3.180 & 0.008 in the range [55.58–1400] GeV, where
it is nearly energy independent. As seen in Fig. 3(a), the
behavior of the electron and positron spectral indices is
distinctly different.

To determine the transition energy E0 where the change
of the electron spectral index occurs, we use a double
power law approximation:

Φe−ðEÞ ¼
!
CðE=20.04 GeVÞγ E ≤ E0

CðE=20.04 GeVÞγ ðE=E0ÞΔγE > E0:
ð3Þ
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FIG. 1. The AMS electron (blue data points) and positron (red
data points, multiplied by 10) spectra (Ẽ3Φe& ). For display
purposes the electron data point at ∼830 GeV is slightly shifted
horizontally to avoid overlap with the positron point. As seen, the
electron spectrum has distinctly different magnitude and energy
dependence compared to that of positrons.
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FIG. 2. (a) The AMS electron spectrum (Ẽ3Φe− , red data points,
placed at Ẽ) and (b) the AMS positron fraction (red data points,
placed at the bin center). Also shown are earlier measurements
from PAMELA [29], Fermi-LAT [30], MASS [31], CAPRICE
[32], AMS-01 [24,33], and HEAT [34]. (c) The sum of AMS
electron and positron [4] spectra (red data points, placed at Ẽ).
Also shown are recent measurements of the combined ðeþ þ e−Þ
flux from ATIC [35], HESS [36], Fermi-LAT [37], DAMPE [38],
and CALET [39].

PHYSICAL REVIEW LETTERS 122, 101101 (2019)

101101-5

1.9 million 
positrons

28.1 million 
electrons

At low energies
the flux behavior is 
strongly dependent on 
the local environment.

The effect of the solar 
wind and of the solar 
magnetic field is 
modifying the observed 
spectra with respect to 
the Local InterStellar
ones 

For a perfect knowledge 
and understanding of 
the LIS spectra a 
detailed and predictive 
model of the sola 
modulation is needed
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PRL 122, 101101 and 041102 (2019) 

* e+ and e- up to TeV presented in next talk by W.Xu



Data analysis
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Template fit to measure the number of electrons/positrons
Chapter 3. Electron and positron identification with AMS 95
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Figure 3.32: Median (left) and RMS (right) of the TRDlhr distribution as a function
of time for electron and proton samples selected on DATA.
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Figure 3.33: An example of the template fit procedure in one energy bin
(�E=3.73-4.12 GeV) and in one time interval of 27 days for the extraction of e� (left)
and e+ (right): the black point are the preselected DATA with positive charge sign, the
red dashed line is the result of the fit that corresponds to the sum of signal (blue line)
and background (green line).

3.5 Fitting procedure

The number of e� and e+ have been statistically extracted from the background of

protons using a template fit procedure performed on the TRDlhr distribution.

The sample to fit has been selected from DATA applying the preselection (see section

3.2) and the request on the charge sign (negative in case of electrons, positive in

case of positrons). The resulting sample contains both signal and background.

For each energy bin and for each time bin, the TRDlhr distribution of DATA is

fitted as a sum of the signal and background single contributions using the TRDlhr

templates, using the RooFit package [109, 110]. As described in section 3.4.1 and

as will be deeper discussed in section 3.4.1 the TRDlhr templates have been defined

directly from DATA applying request on ECALBDT, E/R and the charge sign.

An example of the fitting procedure in one energy bin (�E=3.73-4.12GeV) and in

a time interval of 27 days is shown in figure 3.33, both for the extraction of the
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3.2) and the request on the charge sign (negative in case of electrons, positive in
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F = Absolute differential flux (m-2 sr -1 GeV-1)
Nobs = Number of observed events 
DT = Exposure time (s)

27 days (79 intervals, in May 2011-May2017)
Aeff = Effective acceptance (m2sr)
εtrig = Trigger efficiency

The flux measurement

If the control of Nobs (i.e. rejection of the background) is important for the flux 
measurement, the control of the detector acceptance (geometrical one + 

efficiencies), Aeffεtrig, and its stability in time, is important at the same level
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�i(E,E +�E) =
N i

obs(E,E +�E)

Ai
eff �T i "trig(E) �E

<latexit sha1_base64="TB8DPslydoV6Nx8KHw/PZRm82VU="></latexit>
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Results



Electron and Positron fluxes vs Time – PRL 121, 051101 (2018)

Short-term: prominent and distinct time structures visible in both the positron spectrum 
and the electron spectrum and at different energies (black dashed vertical lines)
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Long-term:
• both positrons 

and electrons 
show the same 
trend (decrease 
and then 
increase

• the end of the 
decrease phase, 
for the two 
fluxes, clearly 
happens at 
different times
(green dashed 
vertical lines)



Positron/Electrons ratio vs Time – PRL 121, 051101 (2018)

The 3871 independent Re measurements as a 
function of energy and time can be described well 

with a logistic function

amplitude of the transition midpoint of the transition

duration of the transition

not  well-defined  polarity

25/07/19 M. Duranti – ICRC2019 21

C



Positron/Electrons ratio vs Time – PRL 121, 051101 (2018)

The ratio exhibits a smooth 
transition over 830�30 days 

from one value to another

The amplitude (C) and the midpoint (t1/2) of transition are energy dependent: 

The duration of transition is energy independent:

25/07/19 M. Duranti – ICRC2019 22

* trev=01/July/2013, time of the solar 
magnetic field reversal

shift: 260�30 daysC consistent with 0 for E 
> 20 GeV



• The redundancy and 
complementarity of AMS-02 and its 
large acceptance and long exposure 
time permitted an unprecedented 
measurement of the e+ and e- fluxes as 
function of time

• For the first time, the charge-sign 
dependent modulation has been 
investigated in detail by leptons alone 

• The high granularity and the large 
range of the time measurement 
permitted a detailed investigation of 
both the short-term and long-term 
characteristic structures of the fluxes 
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Conclusion



More to come!
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