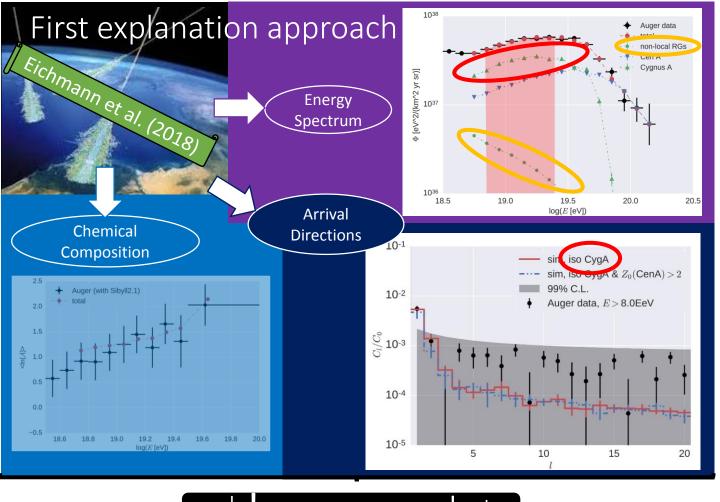
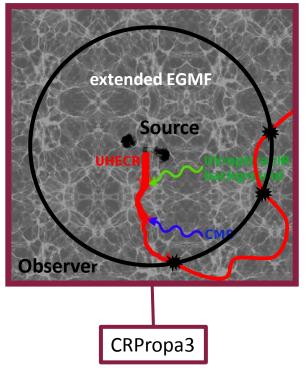

Ultra-high energy cosmic rays by Cygnus A or the bulk of non-local radio galaxies?

Ruhr Astroparticle and Plasma Physics Center Björn Eichmann, Ruhr-Universität Bochum ICRC 2019, 29.07.2019, Madison, WI, USA



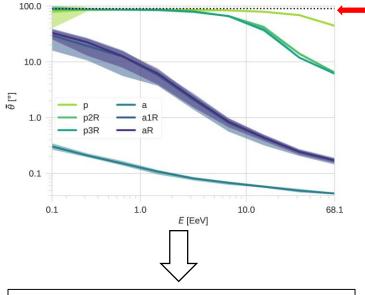
???? by radio galaxies?????

i by Cen A & Cyg A i



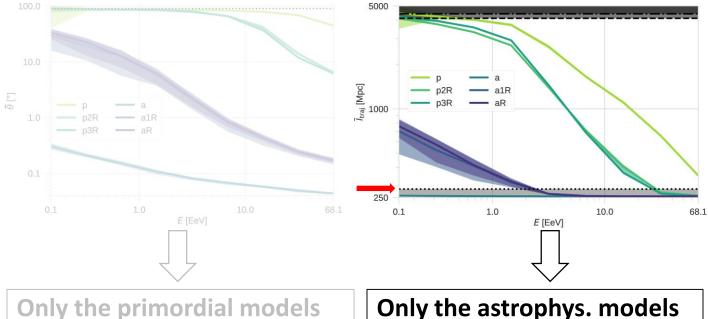
i by Cen A & Cyg A i i

(I) Can UHECRs by Cyg A be isotropized?


The inverted simulation setup

- Extended EGMF models by Hackstein et al. (2018)
 - 3 primordial models (p, p2R, p3R)
 - 3 astrophysical models (a, a1R, aR)
- Include interactions with the EBL and CMB
- Observer sphere with radius = source distance
- Defl. angle $\theta = \swarrow(\vec{p}_{cr}, \vec{d}_{src})$
 - Re-weighting needed: Apply $|\cos \theta|^{-1} (\sin \theta)^{-1}$ to obtain a proper CR flux

The deflection & trajectory lengths of Cyg A

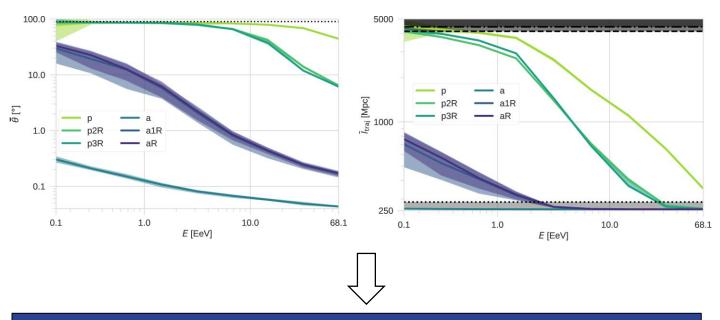


Only the primordial models (p, p2R, p3R) are able to isotropize UHECRs from Cyg A

RAPP

Björn Eichmann

The deflection & trajectory lengths of Cyg A



Only the primordial models (p, p2R, p3R) are able to isotropize UHECRs from Cyg A **Only the astrophys. models** (a, a1R, aR) yield a delay < age of Cyg A (< 10⁸yr)

Björn Eichmann

The deflection & trajectory lengths of Cyg A

Either the arrival directions of UHECRs provide a (too) high degree of anisotropy or the delay exceeds the source age!

Björn Eichmann

(II) Can the bulk of non-local radio galaxies provide the observed UHECR flux?

The UHECR – radio connection

- **CR power** from the jet power: $Q_{cr} \simeq \frac{g_m}{1+k} Q_{jet}$
 - g_m : jet energy found in matter (hadronic and leptonic) imes min. jet energy cond.: $g_m\simeqrac{4}{7}$
 - $k = Q_e/Q_{cr}$: ratio of leptonic to hadronic energy \rightarrow for a vanishing lepton fraction $k \ll 1$
- Jet power from extended radio emission: $Q_{jet} \propto L_{151}^{\beta_L}$
- Maximal rigidity from

magn. field energy
$$Q_B = c\beta_{jet}\pi r^2 \frac{B^2}{8\pi} = Q_{jet} - (Q_{cr} + Q_e) = Q_{jet}(1 - g_m)$$

and Hillas criterion $\hat{R} \equiv \frac{E_{max}}{Ze} = \frac{\beta_{sh}}{f_{diff}}Br$
 $\hat{R} \simeq g_{acc}\sqrt{(1 - g_m)Q_{jet}/c}$, with $g_{acc} = \sqrt{\frac{8\beta_{sh}^2}{f_{diff}^2\beta_{jet}}}$

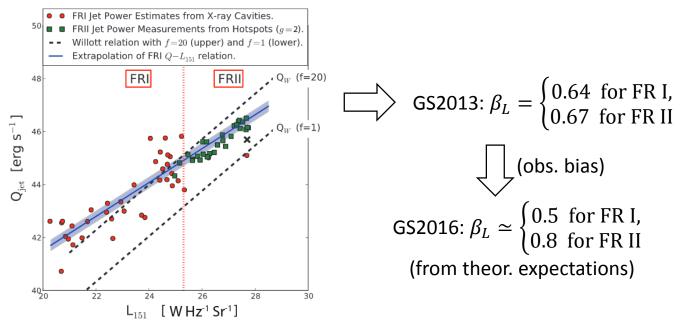
Björn Eichmann

The UHECR – radio connection

- **CR power** from the jet power: $\left|Q_{cr} \simeq \frac{g_m}{1+k}Q_{jet}\right|$
 - g_m : jet energy found in matter (hadronic and leptonic) o min. jet energy cond.: $g_m\simeqrac{4}{7}$
 - $k = Q_e/Q_{cr}$: ratio of leptonic to hadronic energy \rightarrow for a vanishing lepton fraction $k \ll 1$
- Jet power from extended radio emission: $Q_{jet} \propto L_{151}^{\beta_L}$
- Maximal rigidity from

magn. field energy
$$Q_B = c\beta_{jet}\pi r^2 \frac{B^2}{8\pi} = Q_{jet} - (Q_{cr} + Q_e) = Q_{jet}(1 - g_m)$$

and Hillas criterion $\hat{R} \equiv \frac{E_{max}}{Ze} = \frac{\beta_{sh}}{f_{diff}}Br$
 $\hat{R} \simeq g_{acc}\sqrt{(1 - g_m)Q_{jet}/c}$, with $g_{acc} = \sqrt{\frac{8\beta_{sh}^2}{f_{diff}^2\beta_{jet}}}$
 $0.01 \leq g_{acc} \leq 1; \quad g_m < 1 \ (g_m \sim 4/7); \quad \beta_L = ?$

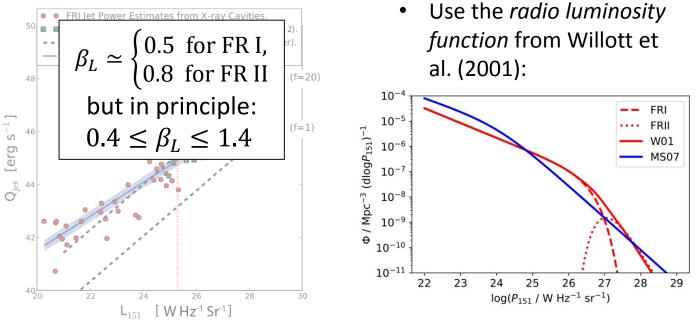


Björn Eichmann

Study of the non-local source contribution

Include fundamental differentiation between FR-I and FR-II sources:

• Use the *jet-to-radio-power correlation* from Godfrey & Shabala (GS):



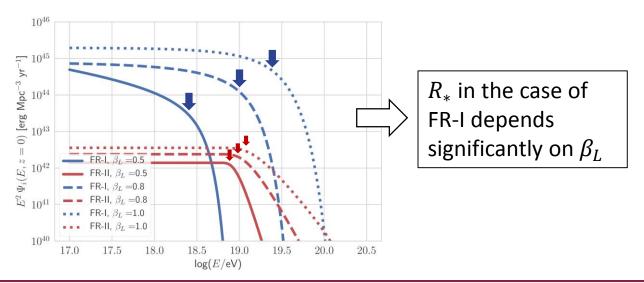
Björn Eichmann

Study of the non-local source contribution

Include fundamental differentiation between FR-I and FR-II sources:

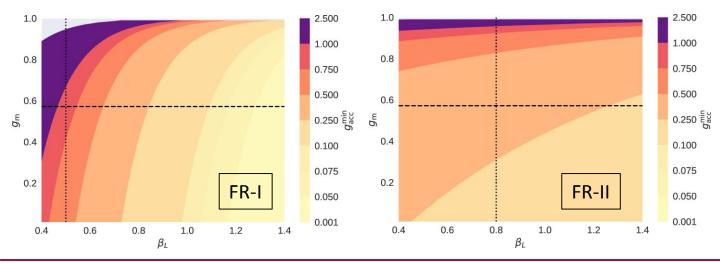
• Use the *jet-to-radio-power correlation* from Godfrey & Shabala:

Björn Eichmann


Spectral behaviour constraints

Bulk of FR-I and FR-II sources have a different critical rigidity:

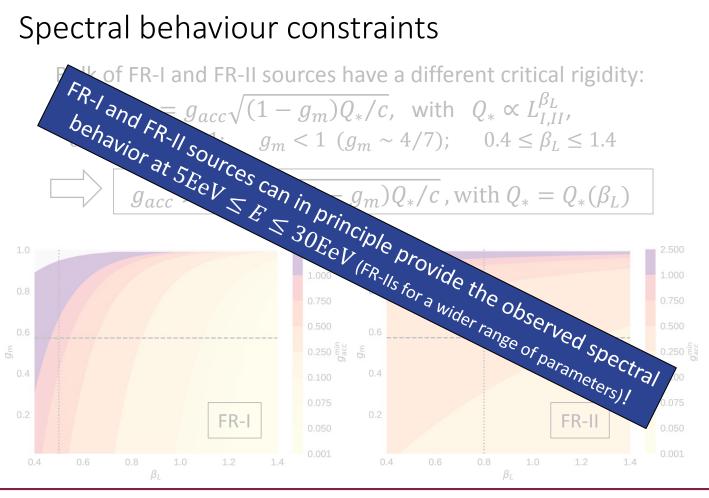
$$\begin{aligned} R_* &= g_{acc} \sqrt{(1 - g_m)Q_*/c}, \text{ with } Q_* \propto L_{I,II}^{\beta_L}, \\ 0.01 &\leq g_{acc} \leq 1; \quad g_m < 1 \ (g_m \sim 4/7); \quad 0.4 \leq \beta_L \leq 1.4 \end{aligned}$$



Björn Eichmann

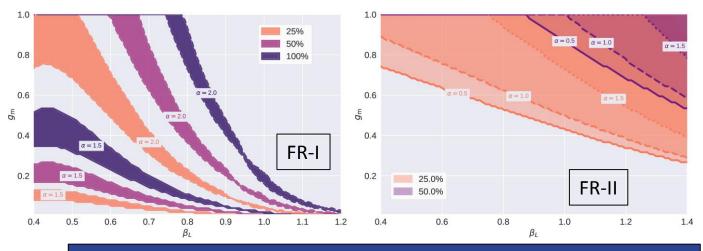
Spectral behaviour constraints

Bulk of FR-I and FR-II sources have a different critical rigidity:


$$\begin{aligned} R_* &= g_{acc} \sqrt{(1 - g_m)Q_*/c}, \text{ with } Q_* \propto L_{I,II}^{\beta_L}, \\ 0.01 &\leq g_{acc} \leq 1; \quad g_m < 1 \ (g_m \sim 4/7); \quad 0.4 \leq \beta_L \leq 1.4 \end{aligned}$$

Björn Eichmann

Spectral behaviour constraints

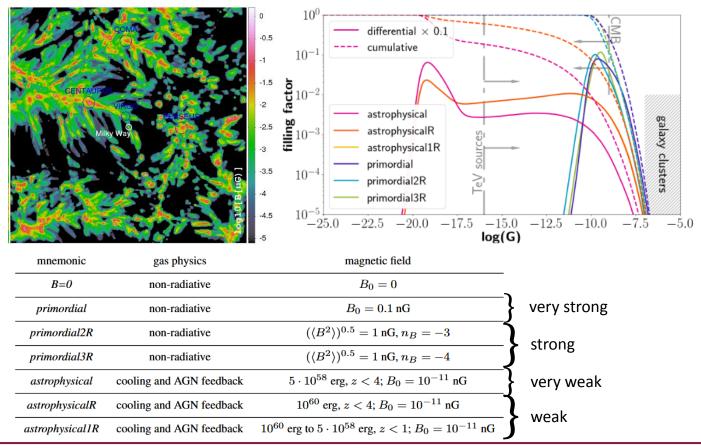

Björn Eichmann

Total amount of UHECR energy constraints

Bulk of FR-I and FR-II sources provide a different **amount** of UHECR energy ($6\text{EeV} \le E \le 20\text{EeV}$) at Earth:

- dependent on the initial spectral index a, g_m , g_{acc} , β_L
- take $R_* > 30$ EV and $g_{acc} > 0.1$ into account

FR-II: hardly provide more than 25% of the obs. energy;FR-I: provide 100% of the obs. energy for a wide range of parameters.



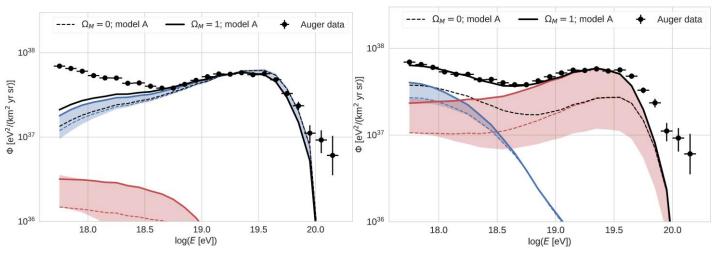
(I) Can UHECRs by Cyg A be isotropized? No; or yes, but the delay exceeds the source age!

(II) Can the bulk of non-local radio galaxies provide the observed UHECR flux? Yes, but predominantly FR-I radio galaxies!

Hackstein et al. (2018) EGMF models

Björn Eichmann

Proof of principle fit scenarios


Scenario I:

Björn Eichmann

Both FR types: a = 1.8, $g_m = \frac{4}{7}$, FR-I: $\beta_L = 0.9$, k = 12, $g_{acc} = 0.8$ FR-II: $\beta_L = 0.8$, k = 0, $g_{acc} = 0.1$

Scenario II:

Both FR types: k = 0, $g_m = \frac{4}{7}$, $g_{acc} = 0.2$ FR-I: $\beta_L = 0.5$, a = 1.9FR-II: $\beta_L = 0.8$, a = 1.8, $10 \times Q_{iet}$

