

Hidden photons as Dark Matter particles (i)

Hidden photon

$$\mathcal{L} = -rac{1}{4}F_{\mu
u}F^{\mu
u} - rac{1}{4} ilde{X}_{\mu
u} ilde{X}^{\mu
u} - rac{\chi}{2}F_{\mu
u} ilde{X}^{\mu
u} + rac{m_{\gamma'}^2}{2} ilde{X}_{\mu} ilde{X}^{\mu} + J^{\mu}A_{\mu}$$

mass term

U(1) is simplest extension of SM, predicted by many theories

WISPy cold dark matter

JCAP06(2012)013

Paola Arias, a,b Davide Cadamuro, a,d Mark Goodsell, a,d Joerg Jaeckel, a,d Javier Redondo and Andreas Ringwald a,d

Dark Matter: non-thermal production, formation of a condensate

$$ho_{ ext{CDM}} = rac{m_{\gamma'}^2}{2} |\mathbf{X}|^2$$

kinetic mixing, coupling

Hidden photons as Dark Matter particles (ii)

Spatially constant oscillating field

$$\begin{pmatrix} \mathbf{A} \\ \mathbf{X} \end{pmatrix} \Big|_{\mathrm{DM}} = \mathbf{X}_{\mathrm{DM}} \begin{pmatrix} -\chi \\ 1 \end{pmatrix} \exp(-i\omega t)$$

Constraint on energy density

$$\frac{m_{\gamma'}^2}{2} \langle |\mathbf{X}_{\rm DM}|^2 \rangle = \rho_{\rm CDM,halo} \sim \frac{0.3 \, {\rm GeV}}{{\rm cm}^3}$$

Relevant frequencies

$$f = \frac{m_{\gamma'}}{2\pi} = 0.24 \text{ GHz } \left(\frac{m_{\gamma'}}{\mu \text{eV}}\right)$$

Maxwellian-like transition at a dielectric interface $\begin{pmatrix} -1 \\ 1/\chi \end{pmatrix} E_{\rm DM} \quad \text{oscillating at } 240\,\mathrm{THz}\,(m/\mathrm{eV})$ with $\sqrt{\langle |E_{\rm DM}|^2 \rangle} \sim 10^{-9}\,\mathrm{V/m}$ mirror reflectivity **Mirror**

Detection principle using spherical mirror

Transition conditions at metallic mirror: production of photons

(Knirck & Jaeckel, PATRAS 2016)

- Signal in radius point
- Daily / seasonal shift by ~ few mm

Dieter Horns,^a Joerg Jaeckel,^{b,c} Axel Lindner,^d Andrei Lobanov,^{e,1} Javier Redondo^{f,g} and Andreas Ringwald^d

JCAP04(2013)016

Setup with spherical mirror

$$\sin \beta = \nu \sin \alpha \approx 10^{-3}$$

$$P_{\rm center} \approx \chi^2 \, \rho_{\rm CDM} \, A_{\rm mirror}$$

First measurement of this type: Tokyo group

Comparison of signal of low-noise PMT in radius point and outside (motorized stage)

Dark box of 1 x 1 x 3 m^3 Mirror of d = 0.5 m ($A = 0.196 m^2$) Data taking ~ 1 month

Photon rate In - Out (at 4.5 Hz rate):

$$N = (-1.9 \pm 3.8(\text{stat.}) \pm 0.5(\text{sys.})) \times 10^{-3} \,\text{Hz}$$

 $m_{\gamma} = 3.1 \pm 1.2 \, \text{eV}$

Experimental search for hidden photon CDM in the eV mass range with a dish antenna

JCAP09(2015)042

J. Suzuki,^a T. Horie,^a Y. Inoue^b and M. Minowa^{a,c}

FUNK – Finding U(1)s of a Novel Kind

Data taken with FUNK

Four channels of data taking (60 sec. each)

Scintillators for muon background

Signal: difference of these channels

Data analysis – selection of single photon pulses

Optimal settings for SPE calibration

- PMT sees SPE for ~ 20% of the time
- Capture single pulse per trace ~ 95% of the time
- Photon arrival time ~ 290 ns

Data analysis – reflections and PMT memory effect

Refections in mirror

Data analysis – results

$$\chi = 4.1 \times 10^{-12} \left(\frac{\phi_{\text{det}}/q_{\text{eff}}}{\text{Hz}} \frac{m_{\tilde{\gamma}}}{\text{eV}} \right)^{1/2} \left(\frac{\eta A_{\text{mirror}}}{\text{m}^2} \right)^{-1/2} \left(\frac{\langle \cos^2 \theta \rangle}{2/3} \right)^{-1/2} \left(\frac{\rho_{\text{CDM}}}{0.3 \, \text{GeV/cm}^3} \right)^{-1/2}$$

$$(r_{\text{in/open}} - r_{\text{out/open}})/\text{Hz} = -0.0161 \pm 0.0119$$

$$(r_{\text{in/closed}} - r_{\text{out/closed}})/\text{Hz} = -0.0278 \pm 0.0112$$

$$\rho_{\rm CDM} = 0.3 \, {\rm GeV/cm^3}$$

$$\chi \lesssim 6.87 \times 10^{-13} \text{ at } 95\% \text{ CL}$$

 $1.94 \leqslant m_{\tilde{\gamma}}/\text{eV} \leqslant 8.40$

Backup slides

Alignment of mirror segments – point spread function

LED mounted next to radius point

Optimum radius point marked by two laser beams

Spot size 2 mm after alignment

Radius point marked by lasers