

MAGIC observations of Dragonfly Nebula at TeV Energies using the Very Large Zenith Angle Technique

<u>Darko Zarić</u>, Razmik Mirzoyan, Ievgen Vovk, Petar Temnikov, Michele Peresano, Nikola Godinović, Juliane van Scherpenberg, Jürgen Besenrieder for the **MAGIC Collaboration**

Madison, USA – July 26th – ICRC2019

Outline

- Introduction
 - Existing observations and current aims
- Methods
 - Very Large Zenith Angle observations
 - Binned likelihood fit
- Results
 - Skymap
 - Spectrum
- Summary

ICRC2019, 26/07/2019

Dragonfly nebula at TeV energies

- MGRO J2019+37: brightest Milagro gamma-ray source in the Cygnus region
 - 80% of the Crab Nebula flux above 12 TeV
- In 2014 VERITAS resolved MGRO J2019+37 into:
 - point source VER J2016+371
 - extended source VER J2019+368
- VER J2019+368 cause for majority of MGRO J2019+37 emission

Aim of these observations

- Domain above several tens of TeV has not been deeply studied
 - Perform spectral measurements in that domain
- Hard spectrum of VER2019+368 published by VER in '14 (~1.75)
 - good candidate for obervations
- Interesting to measure the maximum energy of the emission particles

MAGIC telescopes

- System of two Imaging Atmospheric Cherenkov Telescopes
- Observing the very high energy gamma-ray sky
- Dish diameter 17m
- Located at La Palma, Canary islands
- 2200 m a.s.l

Observing the high energy spectrum

- Observations of very high energy gamma rays
 - Flux decreases rapidly \rightarrow low count rates
- Solution: increase observation time or increase the collection area
- To increase collection area:
 - Build bigger telescope arrays
 - Observing with Very Large Zenith Angles

Very Large Zenith Angle Observations

- Observations above ~60° zenith
- Increase in collection area ~1km²
- Energy threshold ~1 TeV
- Careful analysis of atmosphere required

- For details on the method see poster on the VLZA Technique by Martin Will

- GAI Poster Session 3
- PoS(ICRC2019)828

Skymap

- ~45 hours of data taken in 2018
- Between 62°- 80° zenith
- Source shape asymmetric
- No indication of 2 candidate sources comprising VER 2019+368 in MAGIC data yet

ICRC2019, 26/07/2019

Source modeling

- Standard IACT analysis uses source and background control region to extract spectral parameters
 - Usually only suitable for point like sources
- New analysis tool in MAGIC: Maximum likelihood fit of the source model to the sky image

- Source modeled as an asymmetric
 2D Gaussian with
 a power law spectrum
- Background modeled as isotropic with LogParabolaCutOff

Vovk et al., A&A 619, A7 (2018)

ICRC2019, 26/07/2019

MAGIC Observations of Dragonfly Nebula using the VLZA Technique at TeV Energies 11

Best fit results comparison

• All results fit by a power law spectrum:

$$\frac{\mathrm{d}F}{\mathrm{d}E} = F_0 \left(\frac{E}{\mathrm{E}_0}\right)^{-\mathrm{I}}$$

	VERITAS 2014	HAWC 2017	VERITAS 2018	MAGIC preliminary
Г	1.75 ± 0.08	2.24 ± 0.04	1.98 ± 0.09	2.14 ± 0.08
F ₀ [TeV ⁻¹ cm ⁻² s ⁻¹] x 10 ⁻¹⁴	8.1 ± 0.7	5.8 ± 0.5	10.2 ± 1.1	8.2 ± 0.7
E ₀ [TeV]	5	7	3.11	7
Integration region	R=0.5°	R=0.7°	R=0.23°	$\sigma_x = 0.34^\circ$ $\sigma_y = 0.14^\circ$

HAWC '17 extraction region \approx 95% containment of the MAGIC extraction region

ICRC2019, 26/07/2019

Summary

- Spectrum more inline with 2017 HAWC survey results
- 50 TeV emission, new limit by IACTs of VER2019+368
- Need more data to test the candidate sources possibly composing VER J2019+37

Thank you for your attention!

ICRC2019, 26/07/2019