GAPS: Searching for Dark Matter using Antinuclei in Cosmic Rays

Ralph Bird
University of California, Los Angeles
ralphbird@astro.ucla.edu

for the GAPS Collaboration
https://gaps1.astro.ucla.edu/gaps/people.php
Multimessenger Searches for Dark Matter

Goal:
Find evidence for dark matter

Photons:
Strong Signal
Unknown Background

Neutrinos:
Weak Signal
Low Background

Cosmic Rays:
Strong Signal
Uncertain Background

Need:
High signal-to-background
Good control of systematics
Antinuclei as Dark Matter Signatures

Antideuterons from dark matter model fit too AMS-02 antiproton excess.

High Signal-to-Background ratio = good channel for search.

Low energy antinuclei are hard to produce due to kinematic effects.
Science with Antiprotons

Solar modulation studies comparing proton / antiproton & electron / positron

Primordial black hole search

Antiproton excess fit with dark matter component. Low energy antiprotons will help clarify.

PAMELA and AMS-02 data have enabled detailed studies beyond the force field model. Charge and mass both important!

AMS-02 has a possible excess of antiprotons
Antinuclei provide an excellent window for dark matter searches. With an almost background free signal they provide a very clean window. However, existing techniques (magnetic spectrometers) have challenges:

- Energy threshold: not optimized for the low energies where dark matter signal dominates.
- Background events: difficult to suppress (anti)protons to a low enough level.

Solution:

- Exotic atom technique → no background.
- Dedicated Antarctic balloon → low energy threshold.
Exotic Atom Technique

\[\overline{d} + \rightarrow \overline{d} \]

Stopping Depth

Time to Traverse TOF [ns]

X-Rays

Number of Particles

Production Efficiency

\[p \rightarrow p \]
\[\overline{d} \rightarrow p \]
\[\overline{d} \rightarrow \pi^0 \]

Aramaki+15

\(\frac{\text{counts/atom/keV}}{\text{counts/atom/keV}} \)

\(\frac{\text{production \times efficiency}}{\text{production \times efficiency}} \)

\(\text{Stopping Depth} \)

\(\text{Number of Particles} \)
From Concept to Detector

Plastic scintillator time of flight (TOF) measures primary velocity (β)

Si(Li) tracker slows primary measuring dE/dx

Primary stops, is captured and gives off X-rays which are measured by Si(Li).

Primary annihilates, producing pions and protons, which are recorded by tracker and TOF.

Shallow stopping depth
23, 35 & 58 keV X-rays
3 pions

Deep stopping depth
30, 44 & 67 keV X-rays
6 pions

Aramaki+15
The detector consists of 2 instruments.

- **Si(Li) Tracker (C):**
 - 1440 10 cm-diameter Si(Li) detectors over 10 layers.
 - Stops primary, detects X-rays, tracks secondaries

- **Time-Of-Flight (A, B):**
 - Two layers of plastic scintillator paddles providing near 100% coverage.
 - Characterizes primary, counts secondaries, provides trigger

In addition:

- Cooling, power & thermal insulation (not shown)
- Support systems (D)

Total suspended mass: ~3500 kg
Total power generated: ~1.5 kW
The GAPS Detector – Tracker

Large area, high temperature (< -45°C) detector system sensitive to X-rays and ionizing particles (~10 keV to 100 MeV).

Production method for 10 cm, 8 strip Si(Li) detectors developed. 350/1,440 detectors delivered by Shimadzu Corp.

4 strip detector with discrete component preamplifier. Noise in agreement with model to meet targets.
The GAPS Detector – Tracker Electronics

Silicon-Lithium Detector Readout (SLIDER) ASIC
- 32 analog readout channels
- 11 bits ADC with high dynamic range (10 keV to 100 MeV)
- High resolution at X-ray energies (4 keV)
- High-voltage power for detector modules and low-voltage power for front-end electronics.

8 channel prototype (SLIDER8) constructed and tested.
Full flight prototype (pSLIDER32) in production.

Dynamic signal compression provides high dynamic range

See Poster By V. Scotti for more details on the front end electronics.

ADC Code

Detected Energy [keV]

SLIDER8

0 5000 10000 15000 20000 25000 30000 35000 40000

1000 1200 1400 1600 1800 2000 2200

Si(Li) Detector

Cooling Line

ASIC Board

O-ring to seal with protective window

The GAPS Detector – Time-Of-Flight

2 layers TOF:
Cube – inner layer that provides near 100% hermeticity around tracker.
Umbrella – outer layer that covers all tracks with an incident zenith angle <60°.

Hierarchical trigger detects low velocity primaries with multiple secondaries.
Triggered signals digitized using DRS4 readout board

Lab testing using vertical, central muons
Timing Resolution = $\sigma(t_A - t_B)/\sqrt{2}$
 = 340 ps
Requirement = 500 ps

See Poster By S. Quinn for more details on the TOF development.
The GAPS Detector – Cooling

GAPS will use a novel oscillating heat pipe (OHP) cooling system.
A two-phase working fluid will transfer the heat using passive circulation and self-oscillation around 36 loops connected in series.
Additional active components are included for system robustness.

Lab engineering models have verified the operation of a large scale system.

A scaled radiator was flown piggyback on the NASA/BPO #689 (SIFT) payload in Fall 2018.

Full thermal modelling shows achieving required temperatures throughout flight.
Testing of GEANT4 has identified improvements in the handling of antinuclei. Results cross checked against beam test data (KEK 2004, Aramaki+13).

Analysis will require effective background rejection. Existing methods meeting requirements, further work ongoing.

Reconstructing events with unknown vertex at > 60% reconstruction efficiency with an error on reconstructed position < 70mm (68% containment)

See Poster By R. Munini for more details on the event reconstruction.
Sensitivity

One flight – The best measurement of low energy antiprotons.

GAPS will also be sensitive to antihelium. Sensitivity calculations in progress!

Adapted from Aramaki + 14

Three flights – The most sensitive low energy antideuteron search.

Perez + 19
Antinuclei provide a complementary channel for indirect dark matter searches

Using the exotic atomic technique, it will provide a sensitive, complementary search to existing rigidity measurements

GAPS will search for low energy antinuclei and provide the best low energy measurement of antiprotons to date

Significant progress has been made since funding started in 2017, including a successful CDR in January 2019

GAPS is on course for a first flight in the austral summer of 2021-22

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pGAPS flight</td>
<td>Data Analysis</td>
<td>Funding Starts</td>
<td>CDR</td>
<td>Functional Prototype</td>
<td>Integration</td>
<td>Data Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIRST FLIGHT