# The origin of the slow diffusion around Geminga

Kun Fang (IHEP)

X.J. Bi (IHEP) and P.F. Yin (IHEP)

ICRC2019, Madison



#### The slow-diffusion halo







Abeysekara et al. 2017

- ➤ The diffusion coefficient (~100 TeV) is **hundreds times** slower than that derived by B/C!
- > The slow diffusion should not be universal in the Galaxy.



### **Possible origins**



The slow-diffusion region is **self-generated** by the escaping electrons.

The escaping e-/e+ may induce resonant Alfven waves growth through streaming instability (Skilling 1971, Evoli at al. 2018).

The slow-diffusion region is **preexisting**.

The turbulence is not originated by Geminga pulsar (which is what we focus on).

> Anisotropic diffusion.

No strong turbulence is required. The regular magnetic field is aligned with the line of sight (Liu and Yan 2019).



## **Self-generated scenario**



#### Propagation of electrons:

$$\frac{\partial N}{\partial t} - \nabla \cdot (D \nabla N) - \frac{\partial}{\partial E} (bN) = Q$$

$$D(E_{\rm res}) = \frac{1}{3} r_g c \cdot \frac{1}{kW(k)}$$

radiative cooling is omitted

#### **Evolution of Alfven waves:**

$$\frac{\partial W}{\partial t} + v_A \nabla W = (\Gamma_{\rm cr} - \Gamma_{\rm dis}) W$$

wave damping is omitted



Optimistic for wave growth!



Wave growth through streaming instability:

$$\Gamma_{\rm cr} = -4\pi v_A E_{\rm res}^2 / (3B_0^2 kW) \nabla N(E_{\rm res})$$

The movement of ~70 pc must be considered!

slow-diffusion region should be formed in late age of Geminga.



## **Self-generated scenario**



$$D(x) = D_{\rm ISM} \exp\left(-\frac{4\pi e v_A E}{B_0 c} \int_x^{\infty} N dx'\right)$$

where  $2S \int_{x}^{\infty} N dx' < \iint Q dt dx$ 

the injection power in the late age is small



Fang et al. arXiv:1903.06421

Lower limit of the diffusion coefficient for varying gamma

At most ~0.2 times reduced!

This scenario cannot suppress the diffusion coefficient to the observed level.



#### Slow-diffusion inside SNR



- ➤ Geminga may still be inside its (invisible) host SNR. The size of the SNR should be large.
- The interior of the SNR can be more turbulent than the ISM.

  south of Monogem Ring



ambient density:  $0.034 \text{ cm}^{-3}$ 

initial energy:  $10^{51} \ \mathrm{erg}$  injecta mass:  $1.4 M_{\odot}$  typical

 $\hat{\mathbb{I}}$ 

The current (342 kyr) scale of the Geminga SNR can be **90 pc** 





#### Slow-diffusion inside SNR



$$\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left( D_{kk} \frac{\partial W}{\partial k} \right) \quad \text{Komogo}$$

$$W(0, k) = Q_W \delta(t) \delta(k - k_0) + W_{\text{ISM}}$$

Komogorov type turbulence cascading

Burst-like injection, k0=0.1 pc^-1 since the shock speed declines quickly





Time evolution of turbulence wave spectrum

The required conversion efficiency of magnetic turbulence is 1% to explain the observation

Fang et al. arXiv:1903.06421



#### **Other TeV halos**



#### PSR B0656+14



#### Knies et al. 2018, Abeysekara et al. 2017

#### HESS J1825-137



Aharonian et al. 2006



#### **Summary**



- ➤ The Geminga slow-dffusion halo cannot be self-generated by the escaping electrons considering the proper motion of Geminga.
- ➤ Geminga may still be inside its host SNR. The SNR could be energetic enough to generate a turbulent environment for Geminga.





## Thank you!