

Detection principle of Askaryan radio detectors

→Cost-effective instrumentation for ultrahigh energy (UHE) neutrinos (10¹⁶-10²⁰ eV)

ARIANNA site selection

- Main site: Moore's Bay on Ross ice shelf
 - RF quiet, shielded by Mountains
 - close to McMurdo → simplified logistics, land traverse possible
- Reflections at bottom of ice shelf: Substantially increases
 - ice volume
 - sky coverage → multi messenger astronomy

McMurdo Station

Versatile + autonomous hardware design

- Works reliable, low power ~5W
- Autonomously powered: solar power + wind
 - current prototype survives harsh Antarctic conditions and powers station for ~40% of the time
 - realistic option for any considered site: South Pole, Greenland
- Iridium satellite + WiFi communication
- Can be used at any location (Moore's Bay, South Pole, Antarctic mounts.)
 - easy deployment

TAROGE PoS(ICRC19)967 Jiwoo Nam Talk on Wed.

Hexagonal Radio Array (Test bed for larger scale array)

Neutrino Search

ARIANNA employs template matching to find neutrinos

Tested with cosmic rays PoS(ICRC19)366 A. Nelles Talk Saturday

No neutrino candidate found

Diffuse and Transient Sensitivity

Test of firn and ice effects in the refraction zone

- Calibration measurement at South Pole
 - Transmitter lowered into SPICE hole (1700m deep)
- Ice properties well understood
 - Direction measured independently by dipoles (Vpol) and LPDAs (Hpol)
 - Bending of signal trajectories in firn corrected with < 0.3° precision
- No evidence for for signal distortion in firn (shape and polarization)

Shadow zone propagation PoS(ICRC19)939 R. Lahmann Talk on Wednesday

Reconstruction of Neutrino Direction and Energy

- A shallow detector has good sensitivity to the neutrino
 - direction (2° dominated by signal polarization, 7° already demonstrated via CRs)
 - energy (factor of two, limited by inelasticity fluctuations)
- Precise vertex distance reconstruction (15%) via direct and reflected signal detection

Proof of concept: Snow accumulation measurement

Neutrino reconstruction PoS(ICRC19)899 PS1-108

> Cosmic rays PoS(ICRC19)366 A. Nelles Talk Saturday

> > NuRadioReco software PoS(ICRC19)900 PS3-110

> > > NuRadioMC software PoS(ICRC19)896 PS3-107

Summary

- ARIANNA design: autonomous, independent, shallow detector stations
- Reliable operation (tested at Moore's Bay and South Pole)
- Advantages of Moore's Bay:
 - Full coverage of southern sky
 - Radio quiet
- Neutrino flux limit from 7 station test bed: $E^2\Phi = 1.3 \times 10^{-6} GeV cm^{-2} s^{-1} sr^{-1}$
- Firn and ice properties understood, no evidence for signal distortion
- Good resolution of neutrino direction and energy: important for multi-messenger astrophysics
- Ready to built a large-scale UHE neutrino detector