A novel analytical model of the magnetic field configuration in the Galactic Center explaining the diffuse gamma-ray emission

Mehmet Guenduez
Julia Becker Tjus
Katia Ferrière
Ralf-Jürgen Dettmar
Dominik J. Bomans

Madison
July 26th 2019
Motivation:

- In April 2016 the H.E.S.S. Collaboration reported the detection of a high energy diffuse gamma-ray flux in the Galactic Center from some GeV up to tens of TeV
- No significant allusion to a cut-off

Motivation:

• In April 2016 the H.E.S.S. Collaboration reported the detection of a high energy diffuse gamma-ray flux in the Galactic Center from some GeV up to tens of TeV

• No significant allusion to a cut-off

PeVatron accelerator

Motivation:

- In April 2016 the H.E.S.S. Collaboration reported the detection of a high energy diffuse gamma-ray flux in the Galactic Center from some GeV up to tens of TeV
- No significant allusion to a cut-off

PeVatron accelerator

Semi-analytical model

Motivation:

- In April 2016 the H.E.S.S. Collaboration reported the detection of a high energy diffuse gamma-ray flux in the Galactic Center from some GeV up to tens of TeV.
- No significant allusion to a cut-off

PeVatron accelerator

Semi-analytical model
- Diffusion with Kolmogorov spectrum
- spatially and energy dependent continuous loss and source distribution
- static and spherically symmetric
- injection at the center
- Proton-proton interaction

Motivation:

- In April 2016 the H.E.S.S. Collaboration reported the detection of a high energy diffuse gamma-ray flux in the Galactic Center from some GeV up to tens of TeV
- No significant allusion to a cut-off

PeVatron accelerator

Semi-analytical model
- Diffusion with Kolmogorov spectrum
- spatially and energy dependent continuous loss and source distribution
- static and spherically symmetric
- injection at the center
- Proton-proton interaction

Motivation:

Open questions:
Motivation:

Open questions:

- How many sources are sufficient for the observation?
- How much energy is necessary?
- What is the impact of the ambient conditions?
Problem:

- Larger discrepancies at:
 1. higher longitudes
 2. lower energies
Problem:

- Larger discrepancies at:
 1. higher longitudes
 2. lower energies

- dominant horizontal magnetic field
- additional sources?
Problem:

- Larger discrepancies at:
 1. higher longitudes
 2. lower energies
- dominant horizontal magnetic field
- additional sources?

Move away from semi-analytical approximation
Problem:

• Larger discrepancies at:
 1. higher longitudes
 2. lower energies

• dominant horizontal magnetic field
• additional sources?

Move away from semi-analytical approximation

A novel model of the magnetic field configuration and strength in the Galactic Center
Problem:

- Larger discrepancies at:
 1. higher longitudes
 2. lower energies
- dominant horizontal magnetic field
- additional sources?

Move away from semi-analytical approximation

A novel model of the magnetic field configuration and strength in the Galactic Center

Accurate modeling of the gas distribution
Gas distribution

An accurate 3D distribution has not been modeled yet!
Gas distribution

An accurate 3D distribution has not been modeled yet!

New model
Gas distribution

An accurate 3D distribution has not been modeled yet!
Can be split into 3 components:

New model

3. molecular clouds
Gas distribution

An accurate 3D distribution has not been modeled yet!
Can be split into 3 components:

New model

3. molecular clouds

\[\log\left(\frac{n}{1 \text{ cm}^{-3}}\right) \]

\[n_{IC}/\text{cm}^{-3} \]

\[200. \]

\[150. \]

\[100. \]

\[50.0 \]

\[0.00 \]

\[-70. \]

\[-180. \]

-40. 40.

\[z \text{ in pc} \]

\[Y \text{ in pc} \]

Sgr B2

Dust ridge A-F

Sgr A*

Sgr D

Sgr C

X

Y

Z

Mehmet.Guenduez@RUB.de
Magnetic Field in the GC

Status of research:

[Unger & Farrar, EPJWC, 210, 4005, 2019]

[Jaffe et al., MNRAS, 431, 683, 2013]
Magnetic Field in the GC

Status of research:

[Unger & Farrar, EPJWC, 210, 4005, 2019]

[Jaffe et al., MNRAS, 431, 683, 2013]

lack in the Galactic Center
Magnetic Field in the GC- GBFD19

- Variation range between ~1e-5 G and ~5e-3G
- **Large-scale** magnetic field in the GC initially **poloidal**
- Then, inside **molecular clouds** were sheared out **horizontally**
Magnetic Field in the GC- GBFD19

• Variation range between $\sim 1 \times 10^{-5}$ G and $\sim 5 \times 10^{-3}$ G
• **Large-scale** magnetic field in the GC initially **poloidal**
• Then, inside **molecular clouds** were sheared out **horizontally**

Has not been modeled yet!
Magnetic Field in the GC - GBFD19

- Variation range between $\sim 1e-5$ G and $\sim 5e-3$G
- **Large-scale** magnetic field in the GC initially **poloidal**
- Then, inside **molecular clouds** were sheared out **horizontally**

Has not been modeled yet!

Can be split into 2 components:

1. **Poloidal:**
 - Intercloud medium (ICM) → large scale field
 - Non-thermal filaments (NTFs) → local field

2. **Horizontal:**
 - Dense molecular clouds (MCs) → local field

Mehmet.Guenduez@RUB.de
Poloidal field

From Ferrière et al. (2014) we consider Model C (FT14-C)
Poloidal field

From Ferrière et al. (2014) we consider Model C (FT14-C)

analytical and divergence-free
Poloidal field

From Ferrière et al. (2014) we consider Model C (FT14-C)}

analytical and divergence-free

\[
\mathbf{B}^C = \begin{pmatrix}
B_r \\
B_\phi \\
B_z
\end{pmatrix} = \begin{pmatrix}
\frac{2 a z}{(1+a z^2)^3} \\
0 \\
\frac{1}{(1+a z^2)^2}
\end{pmatrix} \cdot B_1 \cdot e^{-r/L} \cdot \frac{1}{(1+a z^2)}
\]
Poloidal field

From Ferrière et al. (2014) we consider Model C (FT14-C)

analytical and divergence-free

$$\mathbf{B}^C = \begin{pmatrix} B_r \\ B_\phi \\ B_z \end{pmatrix} = \begin{pmatrix} \frac{2 a z}{(1+a z^2)^3} \\ 0 \\ \frac{1}{(1+a z^2)^2} \end{pmatrix} \cdot B_1 \cdot e^{-r/L} \cdot \frac{1}{(1+a z^2)}$$

a ➔ opening of field lines away from the z-axis
L ➔ exponential scale length
B_1 ➔ normalization factor
From Ferrière et al. (2014) we consider Model C (FT14-C)}

analytical and divergence-free

\[
B^C = \begin{pmatrix}
B_r \\
B_\phi \\
B_z
\end{pmatrix} = \begin{pmatrix}
\frac{2a}{1+a z^2} z & 0 & \frac{1}{(1+a z^2)^2} \\
0 & \frac{1}{(1+a z^2)} & 0 \\
\frac{1}{1+a z^2} & 0 & \frac{1}{(1+a z^2)^2}
\end{pmatrix} \cdot B_1 \cdot e^{-r/L} \cdot \frac{1}{1+a z^2}
\]

\(a \rightarrow\) opening of field lines away from the z-axis

\(L \rightarrow\) exponential scale length

\(B_1 \rightarrow\) normalization factor

\(\) \{ \rightarrow\) observation

\) \{ \rightarrow\) geometry
Horizontal field

Starting with Euler’s potentials:

$$\vec{B} = \vec{\nabla} \alpha \times \vec{\nabla} \beta$$
Horizontal field

Starting with Euler’s potentials:

$$\vec{B} = \nabla \alpha \times \nabla \beta$$

analytical and divergence-free
Horizontal field

Starting with Euler’s potentials:

\[\vec{B} = \vec{\nabla} \alpha \times \vec{\nabla} \beta \]

analytical and divergence-free

Consider the zonal plane:

\[B_z = 0 \quad \beta = 1 \]
Horizontal field

Starting with Euler’s potentials:

\[\vec{B} = \vec{\nabla} \alpha \times \vec{\nabla} \beta \]

analytical and divergence-free

Consider the zonal plane \[B_z = 0 \]
\[\beta = 1 \]

\[
\vec{B} = \begin{pmatrix} B_r \\ B_\phi \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{r} \frac{\partial}{\partial \phi} \alpha \\ -\frac{\partial}{\partial r} \alpha \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{r} \frac{\partial \alpha}{\partial \psi} \frac{\partial \psi}{\partial \phi} |_r \\ \frac{\partial \alpha}{\partial \psi} \frac{\partial \psi}{\partial r} |_\phi \\ 0 \end{pmatrix}
\]
Horizontal field

Starting with Euler’s potentials:

\[\vec{B} = \vec{\nabla} \alpha \times \vec{\nabla} \beta \]

analytical and divergence-free

Consider the zonal plane \(B_z = 0 \) \(\beta = 1 \)

\[\vec{B} = \begin{pmatrix} B_r \\ B_\phi \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{r} \frac{\partial}{\partial \phi} \alpha \\ -\frac{\partial}{\partial r} \alpha \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{r} \frac{\partial \alpha}{\partial \psi} \frac{\partial \psi}{\partial \phi} \bigg|_r \\ -\frac{\partial \alpha}{\partial \psi} \frac{\partial \psi}{\partial r} \bigg|_\phi \\ 0 \end{pmatrix} \]

\[\left| \frac{B_r}{B_\phi} \right| = \frac{1}{r} \cdot \frac{dr}{d\phi} \bigg|_{\psi, \rho} = \eta \]
depends on the MC characteristics
Horizontal field

Starting with Euler’s potentials:

\[\vec{B} = \vec{\nabla} \alpha \times \vec{\nabla} \beta \quad \text{analytical and divergence-free} \]

Consider the zonal plane \(B_z = 0 \quad \beta = 1 \)

\[\vec{B} = \begin{pmatrix} B_r \\ B_\phi \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{r} \frac{\partial}{\partial \phi} \alpha \\ -\frac{\partial}{\partial r} \alpha \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{r} \frac{\partial \alpha}{\partial \psi} \frac{\partial \psi}{\partial \phi} |_r \\ -\frac{\partial \alpha}{\partial \psi} \frac{\partial \psi}{\partial r} |_\phi \\ 0 \end{pmatrix} \]

\[|B_r/B_\phi| = \frac{1}{r} \cdot \frac{dr}{d\phi}|_{\psi, \rho} = \eta \quad \text{depends on the MC characteristics} \]

\[\psi = \phi \pm \eta^{-1} \ln \left(\frac{r}{\rho} \right) \quad \frac{\partial \alpha}{\partial \psi} = \rho \cdot B_r(\psi) \]
Horizontal field

Starting with Euler’s potentials:

\[\vec{B} = \vec{\nabla} \alpha \times \vec{\nabla} \beta \]

analytical and divergence-free

Consider the zonal plane \(B_z = 0 \)
\[\beta = 1 \]

\[\vec{B} = \begin{pmatrix} B_r \\ B_\phi \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{r} \frac{\partial}{\partial \phi} \alpha \\ -\frac{\partial}{\partial r} \alpha \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{r} \frac{\partial \alpha}{\partial \psi} \frac{\partial \psi}{\partial \phi} \bigg|_r \\ -\frac{\partial \alpha}{\partial \psi} \frac{\partial \psi}{\partial r} \bigg|_\phi \\ 0 \end{pmatrix} \]

\[|B_r/B_\phi| = \frac{1}{r} \cdot dr/d\phi|_{\psi,\rho} = \eta \]
depends on the MC characteristics

\[\psi = \phi \pm \eta^{-1} \ln (r/\rho) \]

\[\partial \alpha/\partial \psi = \rho \cdot B_r(\psi) \]

we define: \(B_r(\psi) = B_1 \cdot \cos(\psi) \cdot h(z) \)
Horizontal field

Starting with Euler’s potentials:

\[\vec{B} = \nabla \alpha \times \nabla \beta \]

analytical and divergence-free

Consider the zonal plane \(B_z = 0 \)
\(\beta = 1 \)

\[\vec{B} = \begin{pmatrix} B_r \\ B_\phi \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{r} \frac{\partial}{\partial \phi} \alpha \\ -\frac{\partial}{\partial r} \alpha \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{r} \frac{\partial \alpha}{\partial \psi} \frac{\partial \psi}{\partial \phi} |r \\ \frac{\partial \alpha}{\partial \psi} \frac{\partial \psi}{\partial r} |\phi \\ 0 \end{pmatrix} \]

\[|B_r/B_\phi| = \frac{1}{r} \cdot dr/d\phi \bigg|_{\psi, \rho} = \eta \]
depends on the MC characteristics

\[\psi = \phi \pm \eta^{-1} \ln (r/\rho) \]

\[\partial \alpha/\partial \psi = \rho \cdot B_r(\psi) \]

we define: \(B_r(\psi) = B_1 \cdot \cos(\psi) \cdot h(z) \)

net magnetic flux=0

\(h(z) \) is arbitrary
Horizontal field

Starting with Euler’s potentials:

\[\vec{B} = \vec{\nabla} \alpha \times \vec{\nabla} \beta \]

analytical and divergence-free

Consider the zonal plane \(B_z = 0 \) \(\beta = 1 \)

\[\vec{B} = \begin{pmatrix} B_r \\ B_\phi \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{r} \frac{\partial}{\partial \phi} \alpha \\ -\frac{\partial}{\partial r} \alpha \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{r} \frac{\partial \alpha}{\partial \psi} \frac{\partial \psi}{\partial \phi} |_r \\ -\frac{\partial \alpha}{\partial \psi} \frac{\partial \psi}{\partial r} |_\phi \\ 0 \end{pmatrix} \]

\[|B_r/B_\phi| = \frac{1}{r} \cdot dr/d\phi |_{\psi, \rho} = \eta \]
depends on the MC characteristics

\[\psi = \phi \pm \eta^{-1} \ln (r/\rho) \]
\[\partial \alpha/\partial \psi = \rho \cdot B_r(\psi) \]

we define: \(B_r(\psi) = B_1 \cdot \cos(\psi) \cdot h(z) \)

net magnetic flux = 0

\[B_{\text{tot}} = B_{IC}^C + \sum_{i=1}^{8} B_{NTF,i}^C + \sum_{i=1}^{12} B_{MC,i} \]

\[h(z) \text{ is arbitrary} \]
Magnetic Field in the GC - GBFD19

Magnetic field strength in μG

0.0 2.0e+03 4.0e+03 6.0e+03 8.0e+03 1.0e+04

Mehmet.Guenduez@RUB.de
Magnetic Field in the GC - GBFD19

Magnetic field strength in μG

0.0 2.0e+03 4.0e+03 6.0e+03 8.0e+03 1.0e+04

log₁₀(n/1 cm⁻³)

Sgr B2 Radio Arc NTFs

Sgr A*

Z in pc

Mehmet.Guenduez@RUB.de
Magnetic Field in the GC - GBFD19

Magnetic field strength in μG

0.0 2.0e+03 4.0e+03 6.0e+03 8.0e+03 1.0e+04

$\log_{10}(n/1cm^{-3})$

0.0 1.0 2.0 3.0 4.0 5.0
Magnetic Field in the GC - GBFD19

Colored data from [Nishiyama et al., APJ Letters, 712, L23, 2010]
Impact on CR propagation

This work

[Jansson & Farrar, APJ, 757, 14, 2012]
Impact on CR propagation

This work

[Jansson & Farrar, APJ, 757, 14, 2012]
Summary and conclusion

- A centrally located source is not easily sufficient for the observed gamma-ray emission
- **GBDF19:**
 - could explain the diffuse gamma-ray emission caused by a single centralized source
 - is strong in non-thermal filaments and molecular clouds
 - is compatible with polarization data and corresponds to the observations
 - has a significant impact on the longitudinal profiles of CR propagation
 - can be combined with any other Galactic B-field models
- The 3D gas distribution and **GBDF19** make a more accurate calculation accessible for the GC investigators
Backup slides

- Proton as primary cosmic-rays injected from SgrA* at the origin
- spherically symmetric description
- diffusion dominated scenario is favored
- spatial and energy dependent source
- energy dependent continuous loss
For the first time:
 - we include a spatially dependent term in the hadronic pion production interaction term

\[-D_0 \gamma^\nu \frac{2}{r} \frac{\partial}{\partial r} n(r, \gamma) - D_0 \gamma^\nu \frac{\partial^2}{\partial r^2} n(r, \gamma) - \frac{\partial}{\partial \gamma} b(r) \gamma^{1+\mu} n(r, \gamma) = Q(r, \gamma) \]

Solution:

\[n(r, \gamma) = \gamma^{-1-\mu} \int \int \frac{r_0^{\frac{3}{2}} H[r - r_0] \cdot H[\gamma_0 - \gamma]}{\sqrt{4\pi \cdot D_0 \cdot b_0 \cdot r_c^2}} \cdot \frac{\gamma_0^{\mu+2\nu}}{\sqrt{\frac{\gamma^\nu - \gamma_0^\nu}{\nu}}} \cdot \exp \left(-\frac{D_0}{4\nu \cdot b_0 \cdot r_c^2} (\gamma^\nu - \gamma_0^\nu) \right) \cdot \exp \left(-\frac{\log(\sqrt{r_0})^2 \cdot b_0 \cdot r_c^2}{D_0 \cdot (\gamma^\nu - \gamma_0^\nu)} \right) - \exp \left(-\frac{\log(\sqrt{r_0})^2 \cdot b_0 \cdot r_c^2}{D_0 \cdot (\gamma^\nu - \gamma_0^\nu)} \right) \cdot Q(r_0, \gamma_0) \, dr_0 \, d\gamma_0 \]
Backup slides

Graph 1:
- **x-axis:** E_r in eV
- **y-axis:** dN/dE_r
- **Legend:**
 - $E_r = 10^{10}$ - 10^{15} eV
 - $L_y(r,E>1\ TeV)$ $\alpha = 2.2$
 - HESS
 - $L_y(r,10 GeV < E < 0.3 TeV)$ $\alpha = 2.2$
 - Fermi

Graph 2:
- **Title:** Pacman
- **Legend:**
 - pacman
 - IV
 - V
 - VI
 - VII

Graph 3:
- **Legend:**
 - H.E.S.S
 - $+0.4$
 - $+0.2$
 - 0.0
 - -0.2
 - -0.4

Graph 4:
- **Legend:**
 - 0.0
 - -0.25
 - -0.50
 - -0.75
 - -1.00
 - -1.25

Email: Mehmet.Guenduez@RUB.de
\[\bar{B}_{MC}^{r>r'} = \beta \cdot \left(\pm \eta^{-1} \frac{R}{r+b} \begin{array}{cc} \frac{R}{r} \\ 0 \end{array} \right) \]
\[\bar{B}_{MC}^{r<r'} = \beta \cdot \frac{R}{r'} \left(\frac{3r}{r'} - \frac{2r^2}{r'2} \right) \left(\pm \frac{r}{\eta(r+b)} \left(1 + \frac{6(r-r')}{2r-3r'} \left(\frac{1}{\cos(\pm v(r)+m\phi)} \right) \right) \right) \]
\[B_{\text{tot}} = B_{IC}^C + \sum_{i=1}^{8} B_{NTF,i}^C + \sum_{i=1}^{12} B_{MC,i} \]
Backup slides

Magnetic field strength in μG

Y in pc

X in pc

Z in pc

Y in pc

Z in pc

Mehmet.Guenduez@RUB.de