First HAWC Spectra of Galactic Gammaray Sources Above 100 TeV and the **Implications for Cosmic-ray** acceleration

Kelly Malone ICRC 2019 Los Alamos National Laboratory HAWC Collaboration

Sources of cosmic rays

Sources of cosmic rays

Gamma-ray production from cosmic rays

- Hadronic
- CRs interact with environment, pions are created
- $\cdot \pi_0 \rightarrow 2\gamma$
- Gamma rays are an order of magnitude less energetic than cosmic ray. (1 PeV CR creates ~100 TeV gamma ray)
- "PeVatron" spectrum would extend to ~100 TeV without any spectral break or cutoff
- https://arxiv.org/pdf/ 1509.07851.pdf Central Engine

Hard spectrum

Other sources emitting at the highest energies

- Leptonic
- TeV gamma rays created via inverse Compton scattering
- Klein Nishina effects result in changing spectral index with energy
- At least least two PWN previously known to emit above ~50 TeV in energy (the Crab Nebula, HESS J1825-137)

Introduction to HAWC

Number of tanks

Area

Location

Altitude

Duty Cycle

Coverage

Sensitivity

Angular resolution

HAWC with Pico de Orizaba in the background

K. Malone / ICRC 2019

300 (4 PMTs/200,000 L of water in each)

22,000 m²

Puebla, Mexico (19° North)

4100 m

> 95%

2/3 of sky per day

300 GeV to > 100 TeV

> 0.1 degrees

Above 10 TeV, HAWC is the most sensitive currentlyoperating experiment in the world. New energy estimators increase the dynamic range of the experiment

High-energy catalog search method

- Similar to 2HWC catalog construction (ApJ 2017), but recently developed energy-estimation algorithms allow for searches above specific energy thresholds. Ground parameter energy estimator used here
- TS maps of the highest-energy sky created using likelihood framework
 - Two energy thresholds: > 56 TeV and > 100 TeV
 - Power law spectrum assumed with a variety of different morphologies (point-like and extended)
- Hotspots where TS > 25 identified. Must be separated from nearby local maxima by $\Delta \sqrt{(TS)} > 2$.

Highlighted sources emit above 100 TeV

Source name	RA (deg.)	Dec (deg.)	Gaussian width above 56 TeV (deg)	Nearest 2HWC source	Distance to 2H source (dec
eHWC 0534+220 (Crab)	83.61 +/- 0.02	22.00 +/- 0.03	Point source	Crab	0.03
eHWC J1809-193	272.46 +/- 0.13	-19.34 +/- 0.14	0.34 +/- 0.13	2HWC J1809-190	0.30
eHWC J1825-134	276.40 +/- 0.06	-13.37 +/- 0.06	0.36 +/- 0.05	2HWC J1825-134	0.07
eHWC J1839-057	279.77 +/- 0.12	-5.71 +/- 0.10	0.34 +/- 0.08	2HWC J1839-057	0.96
eHWC J1842-035	280.72 +/- 0.15	-3.51 +/- 0.11	0.39 +/- 0.09	2HWC J1844-032	0.44
eHWC J1850+001	282.59 +/- 0.21	0.14 +/- 0.12	0.37 +/- 0.16	2HWC J1849+001	0.20
eHWC J1907+063	286.91 +/- 0.10	6.32 +/- 0.09	0.52 +/- 0.09	2HWC J1908+063	0.16
eHWC J2019+368	304.95 +/- 0.07	36.78 +/- 0.04	0.20 +/- 0.05	2HWC J2019+367	0.02
eHWC J2030+412	307.74 +/- 0.09	41.23 +/- 0.07	0.18 +/- 0.06	2HWC J2031+415	0.34

K. Malone / ICRC 2019

8

Inner Galactic plane above 56 TeV

- 1038 days of data
- Map assumes 0.5 degree disk as the spatial morphology
- All sources in the Galactic plane remain extended above 56 TeV

K. Malone / ICRC 2019

√TS

Inner Galactic plane above 56 TeV

- 1038 days of data
- Map assumes 0.5 degree disk as the spatial morphology
- All sources in the Galactic plane remain extended above 56 TeV

K. Malone / ICRC 2019

√TS

Inner Galactic plane above 56 TeV

83 82 81 80 79 78 77 76 75 74 3 72 71 70 69

eHWC J2030+412 Cygnus Cocoon region)

[eHWC J2019+368]

9

43 42 41 40

2

4

 $-1 \ 0 \ 1$

[。] q

8 9 10 11 5 6 7 \sqrt{TS}

Areas of emission coincident with the Milagro Galactic plane map (median energy ~20 TeV)

Inner Galactic plane above 100 TeV

- 1038 days of data
- Map assumes 0.5 degree disk as the spatial morphology
- All sources in the Galactic plane remain extended above 100 TeV

K. Malone / ICRC 2019

TS

Crab Nebula spectrum

https://arxiv.org/abs/1905.12518 Accepted by ApJ

K. Malone / ICRC 2019

Crab spectra

837 day dataset

 Two independent energy estimation methods agree within statistical uncertainties

Agree well with IACTs in energy range with overlapping sensitivity

K. Malone / ICRC 2019

Crab spectra

837 day dataset

 Two independent energy estimation methods agree within statistical uncertainties

 Agree well with IACTs in energy range with overlapping sensitivity

Spectra of the 3 sources that emit above 100 TeV

eHWC J1825-134 **(Overlap with both HESS J1825-134 and HESS J1826-130**)

15

Spectra of the 3 sources that emit above 100 TeV

- Spectra of the three highest-energy sources are different
- Roughly the same flux at 100 TeV
 - Possibly selection bias due to HAWC's sensitivity
- More talks on highest-energy HAWC photons and implications:
 - J. Linnemann, 14:00 on July 30, GAI9
 - H. Martinez-Huerta, 17:00 on July 31, GAI11

Possible emission mechanisms

- Leptonic
 - All of these sources have at least one ATNF pulsar within 0.5 degree.
 - Pulsar with $\dot{E} > 10^{36}$ erg/s present for all but one high energy source; characteristic ages of < ~50 kyr

• Hadronic

- SNRs and/or molecular clouds
- Many of these sources

 have been hypothesized
 as promising neutrino
 targets by IceCube

Multi-messenger analyses

- Neutrinos seen in coincidence with a PeVatron candidate would unambiguously indicate hadronic component
- MGRO J1908+06 has one of the best pvalues in IceCube point source searches, although still consistent with backgroundonly hypothesis
- Sub-dominant fraction of IceCube neutrinos Galactic. Joint analysis with this dataset could still be interesting

K. Malone / ICRC 2019

HAWC upgrade

- Outrigger array operational
- Will soon have data with at least 2x sensitivity to gamma rays above 10 TeV.
- Could lead to more detections above 50 TeV
- More in talk by V. Marandon, 14:45 on July 26, GAI3
- Poster by V. Joshi and H.
 Schoorlemmer, GAI poster
 session #1

Conclusion

- HAWC has sensitivity above 50 TeV and see many sources above this threshold
- Three sources extend above 100 TeV. This is the highest-energy source catalog to date.
- Cannot distinguish between emission mechanisms at this time.
- Recently installed outrigger array will increase sensitivity in this energy range
- Multimessenger studies with neutrinos will be important, as well as multi-wavelength with other energies

Backup slides

Event-by-event energy estimation

- and 100 TeV gamma rays

K. Malone / ICRC 2019

Recently developed event-by-event energy estimation algorithm allows HAWC to easily distinguish between 10 TeV

Previously published HAWC papers relied on a rudimentary energy variable that lost dynamic range above 10 TeV

Event-by-event energy estimation

Performance best above 10 TeV, where showers are largest

