A follow-up survey of Active Galactic Nuclei with the HAWC γ-ray observatory

Alberto Carramiñana, Daniel Rosa, Sara Coutiño, Anna Lia Longinotti for the HAWC Collaboration

Instituto Nacional de Astrofísica, Óptica y Electrónica Luis Enrique Erro 1, Tonantzintla, Puebla, México

HAWC AGN follow-up survey

- 1. Active Galactic Nuclei
- 2. The HAWC GRO
- 3. Photon absorption by EBL
- 4. AGN 3FHL sample
- 5. Analysis and results
- 6. Summary

1. Active Galactic Nuclei

- · A radio discovery, AGN are strong emitters along all the EM spectrum.
- Compact, energetic, variable, jets \Rightarrow SMBH model, disk geometry.
 - Blazars as AGN whose axis matches our line of sight
- Multi-messenger nature: AGN are very likely to be cosmic-ray sources, specially at ultra high energies (Hillas 1984), and neutrino sources (TXS 0506+056).
- A detailed long-term view of their TeV behavior can be provided by wide field-of-view γ -ray observatories.
- Photon-photon attenuation by the EBL is an obstacle
 - HAWC survey limited here to z < 0.3.

2. The HAWC GRO

- Air shower array of 300 WCD occupying 22,000 m²:
 - each WCD is 7.2m in diameter and 5m in height, with 180,000 liters of highly purified water;
 - each WCD instrumented with 3+1 PMTs;
 - started full operation in March 2015.
 - outrigger expansion to 100,000 m² in 2017-2018.
- HAWC surveys continuously 1.8 sr around its zenith; it scans 2/3 of the sky every sidereal day in the 0.1-100 TeV band (and above Malone talk GAI2b).
- HAWC median photon energy is 7 TeV (Crab & 2HWC; Abeysekara et al. 2017a,b).

3. Photon photon attenuation by the EBL

- High energy γ rays interact with intervening photons.
- $\gamma\gamma \rightarrow e^-e^+$ process is optimum shortly above threshold:

$$E_{\gamma}h\nu \approx 0.25 \text{ TeV} \cdot \text{eV}$$

$$[\lambda \leq 4.8 \ \mu m \ (E_{\gamma}/TeV)]$$

• The opacity of the Universe to γ rays, $\tau(E_{\gamma},z)$, is calculated using a model of $n_{\nu}(z)$, the extragalactic background light (EBL), from UV to FIR.

3. Photon photon attenuation by the EBL

• Calculating the attenuation for a distant source with an intrinsic power-law spectrum, observed with a threshold energy E₀, one gets,

$$N_{obs}(>E_0) = N_{intr}(>E_0) \exp(-z/z_h),$$

where z_h depends strongly on E_0 and weakly on spectral index α .

• For E_0 =0.5 TeV (maximum of HAWC f_{hit} bin 1) and α =2.5, one gets z_h =0.108.

(EBL: Dominguez 2011)

4. The HAWC AGN follow-up survey

- Survey of AGN in the 3FHL within the FoV of HAWC ($|\delta$ -19°|<40°) limited to z<0.3.
- Uses the HAWC 1017 day dataset: Nov 2014 to Dec 2017
 - 2HWC contains 507 day of data
- Standard HAWC analysis (as in Crab 2017 and 2HWC):
 - Maximum Likelihood testing spectral fits: intrinsic power-law × EBL at the position and redshift of the associated counterpart.
 - TS calculated from log-likelihood ratio between best fit (H₁) and null hypothesis (H₀)
 - EBL model of Dominguez et al. (2011).

3FHL AGN: all

1231 AGN in 3FHL

3FHL AGN: $|\delta - 19^{\circ}| < 40^{\circ} \& z < 0.3$

138 AGN in 3FHL & HAWC FoV & z<0.3 :: THIS IS THE SAMPLE

3FHL AGN sample: > 0.5 TeV

AGN in the sample detected in all Fermi bands 7 with TS>10 and 2 with TS>25

3FHL E-bands	N(TS>10)	N(TS>25)
1	127	95
1 & 2	110	68
$1 \rightarrow 3$	72	43
$1 \rightarrow 4$	28	13
$1 \rightarrow 5$	7	2

4. The 3FHL sample

- AGNs in the 3FHL matching $|\delta-19^{\circ}| < 40^{\circ}$ and z < 0.3
 - from 1251 total of AGNs to a sample of 138 (of which 117 BL Lacs).
- Finding best targets for HAWC:
 - (1) TS>10 up to (0.5-2.0 TeV) in 3FHL \Rightarrow {Mrk 421, Mrk 501 @ TS>25} + {I Zw 187 = 1ES 1727+502, 1H 1013+498, B3 2247+381, RX J0648.7+1516, 1H 1914–194}.
 - (2) extrapolated N(>0.5 TeV) \geq 30 mCrab with 3FHL spectral parameters: {Mrk 421, Mrk 501, I Zw 187, B3 2247+381} + {M87, IC 310, 1ES 2344+514, TXS 0210+515}.

HAWC AGN survey @ ICRC - draft talk

(3) extrapolated N(>0.5 TeV) \geq 30 mCrab from ACTs: + {H 1426+428}.

5. Analysis and results

- Description of fhit, fraction of channels hit, as in Crab 2017 and 2HWC.
- HAWC 1017 day data, f_{hit} binned. MaxLik analysis: attenuated power-law fit at location and redshift of counterpart:

$$(dN/dE)_{intr} = \varphi_1 (E/1 \text{ TeV})^{-\alpha} \iff (dN/dE)_{obs} = \varphi_1 (E/1 \text{ TeV})^{-\alpha} \exp\{-\tau(E,z)\},$$

- Run 1: LiFF spectral fits with $\{\phi_1; \alpha\}$ free.
- Run 2: 95% CL upper limits with Zebra, φ_1 free and $\alpha=2.5$.
- Upper limits given here as observed photon fluxes:

$$N_{obs}(>0.5 \text{ TeV}) \le \text{ sqrt}(32/9) \ \phi_1^{UL} \exp(-z/z_h)$$

Object	Class	Redshift	ϕ_1	$N_{obs}(> 0.5 \text{ TeV})$	S	Crab Nebula
		<i>(z)</i>	$(10^{-12} \text{TeV}^{-1} \text{cm}^{-2} \text{s}^{-1})$	$(10^{-12} \text{cm}^{-2} \text{s}^{-1})$		$N_{0.5} \approx 62.4$
Mrk 421	BL Lac	0.031	28.1 ± 1.3	39.76 ± 1.84	+45.7	
Mrk 501	BL Lac	0.033	12.7 ± 1.3	17.64 ± 1.81	+19.9	
M 87	RDG	0.004	≤ 0.52	≤ 0.95	+1.55	
IC 310	RDG*	0.019	≤ 1.56	≤ 2.47	+1.06	
1ES 2344+514	BL Lac	0.044	< 5.08	≤ 6.37	+0.70	
TXS 0210+515	BL Lac	0.049	≤ 7.71	≤ 9.23	+1.65	Some of
1ES 1727+502	BL Lac	0.055	≤ 3.24	≤ 3.67	-0.40	these
B3 2247+381	BL Lac	0.119	≤ 2.85	≤ 1.78	-0.64	
H 1426+428	BL Lac	0.129	≤ 8.83	≤ 5.03	+0.86	BL Lac are EHBL
1H 1914-194	BL Lac	0.137	≤ 24.8	≤ 1.31	-0.51	
RX J0648.7+1516	BL Lac	0.179	≤ 3.56	≤ 1.28	-0.51	(GAI5)
1H 1013+498	BL Lac	0.212	≤ 2.48	≤ 0.66	-0.11	

Table 1: The twelve best HAWC targets, all fitted assuming $\alpha = 2.5$. The upper panel shows the two detections, which are followed by the non-detections, ranked by redshift. The values for the two Markarians assume $\alpha = 2.5$, which differs from their best fit value. The limits are 95% confidence level.

Object	Class	Redshift	ϕ_1	$N_{obs}(> 0.5 \text{ TeV})$	S	
		(z)	$(10^{-12} \text{TeV}^{-1} \text{cm}^{-2} \text{s}^{-1})$	$(10^{-12} \text{cm}^{-2} \text{s}^{-1})$		
Mrk 421	BL Lac	0.031	28.1 ± 1.3	39.76 ± 1.84	+45.7	
Mrk 501	BL Lac	0.033	12.7 ± 1.3	17.64 ± 1.81	+19.9	
M 87	RDG					
IC 310	RDG*	About Mrk 421 and Mrk 501 with HAWC				
1ES 2344+514	BL Lac					
TXS 0210+515	BL Lac		ed spectral fits for	Sara Coutiño		
1ES 1727+502	BL Lac	Mrk 421 and Mrk 501		poster PS2-52		
B3 2247+381	BL Lac	γ and X-ray correlations		José Andrés García		
H 1426+428	BL Lac	for Mrk 421		Talk GAI8h		
1H 1914-194	BL Lac					
RX J0648.7+1516	BL Lac	Search for neutrinos on Muk		Mukharbek Organokov		
1H 1013+498	BL Lac	Mrk 421 and Mrk 501		NU6h		

Table 1: The twelve best HAWC targets, all fitted assuming $\alpha = 2.5$. The upper panel shows the two detections, which are followed by the non-detections, ranked by redshift. The values for the two Markarians assume $\alpha = 2.5$, which differs from their best fit value. The limits are 95% confidence level.

Crab Nebula

 $N_{0.5} \approx 62.4$

Object	Class	Redshift	ϕ_1	$N_{obs}(> 0.5 \text{ TeV})$	S	Crab Nebula
		(z)	$(10^{-12} \text{TeV}^{-1} \text{cm}^{-2} \text{s}^{-1})$	$(10^{-12} \text{cm}^{-2} \text{s}^{-1})$		$N_{0.5} \approx 62.4$
Mrk 421	BL Lac	0.031	28.1 ± 1.3	39.76 ± 1.84	+45.7	
Mrk 501	BL Lac	0.033	12.7 ± 1.3	17.64 ± 1.81	+19.9	
M 87	RDG	0.004	≤ 0.52	≤ 0.95	+1.55	Two
IC 310	RDG*	0.019	≤ 1.56	≤ 2.47	+1.06	radiogalaxies
1ES 2344+514	BL Lac	0.044	< 5.08	≤ 6.37	+0.70	
TXS 0210+515	BL Lac	0.049	≤ 7.71	≤ 9.23	+1.65	
1ES 1727+502	BL Lac	0.055	≤ 3.24	≤ 3.67	-0.40	
B3 2247+381	BL Lac	0.119	≤ 2.85	≤ 1.78	-0.64	
H 1426+428	BL Lac	0.129	≤ 8.83	≤ 5.03	+0.86	
1H 1914-194	BL Lac	0.137	≤ 24.8	≤ 1.31	-0.51	
RX J0648.7+1516	BL Lac	0.179	≤ 3.56	≤ 1.28	-0.51	
1H 1013+498	BL Lac	0.212	< 2.48	< 0.66	-0.11	

Table 1: The twelve best HAWC targets, all fitted assuming $\alpha = 2.5$. The upper panel shows the two detections, which are followed by the non-detections, ranked by redshift. The values for the two Markarians assume $\alpha = 2.5$, which differs from their best fit value. The limits are 95% confidence level.

Radiogalaxies are of particular interest as $\gamma\gamma$ attenuation occurs above 1 TeV. They can provide a more direct diagnostic on the production mechanisms. For E>10 TeV they can sample the Mid to far IR part of the EBL.

Summary

- HAWC has performed a follow-up of 138 AGN detected above 10 GeV by *Fermi*-LAT; selected as those in its FoV and z<0.3.
- The two nearest BL Lac objects known, Mrk 421 and Mrk 501, are detected with high significance.
- Upper limits are set for the rest of the sample:
 - the EBL is an important limiting factor to reach beyond z≥0.1 with current air shower arrays.
 - long term average TeV emission from radiogalaxies is below 30 mCrab.
 - Full search refereed draft paper in HAWC editorial pipeline.
- · Work on development and implementation of low-energy analysis tools.

