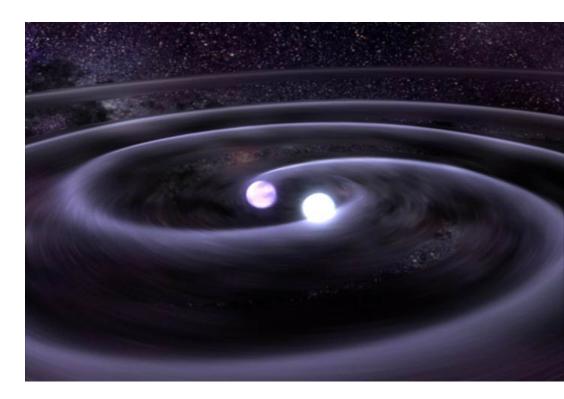
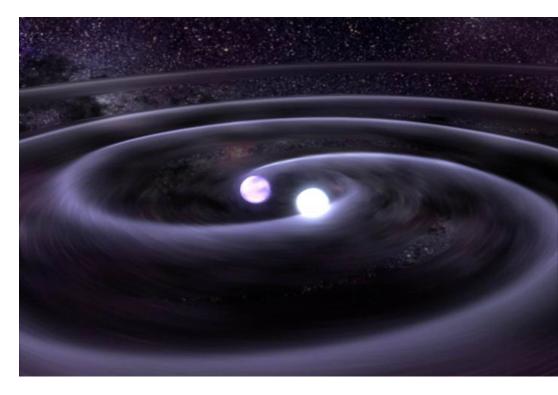


A Search for IceCube Neutrinos from the First 33 Detected Gravitational Wave Events


ICRC 2019 – Madison, WI

Raamis Hussain¹, Justin Vandenbroucke¹, Joshua Wood²

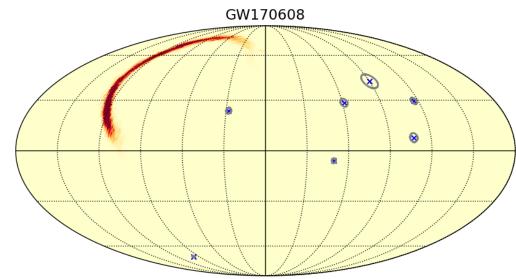
¹University of Wisconsin – Madison, ²IceCube Collaboration


Motivation

- The merging of compact objects produces large amounts of gravitational waves (GWs) detectable by LIGO-Virgo Collaboration (LVC)
- These mergers can also produce neutrinos via relativistic jets or kilonovae
- LVC has reported 33 detections as of July 30th, 2019
 - 28 binary black hole mergers
 - 3 binary neutron star merger candidates
 - 2 terrestrial events

Motivation

- We search for neutrino emission from GW events detected by LVC during the O1,O2, and O3 observing runs
- Use unbinned maximum likelihood method with localization skymaps provided by LVC as spatial priors
- Search 1000 second time window centered around GW event time
- Another realtime analysis in IceCube uses a Bayesian approach to quantify the probability of a joint GW and Neutrino detection: PoS(ICRC2019)930



Analysis Procedure

- 1. Consider 1000 second time window centered around GW event
- 2. Perform all-sky scan over full sky
- 3. Weight results by spatial prior
- 4. Record best fit TS value (max TS of scan)
- 5. Perform 30k neutrino scrambles with fixed skymap

Event Sample:

- Gamma-ray follow up (GFU) neutrino sample
- 6.7mHz all sky rate
- Median angular error <1° for neutrino energies >1TeV

Likelihood Construction

Likelihood:

$$\mathcal{L} = \frac{e^{-(n_s + n_b)}(n_s + n_b)^N}{N!} \prod_{i=1}^N \frac{n_s \mathcal{S}_i + n_b \mathcal{B}_i}{n_s + n_b}$$

Test Statistic

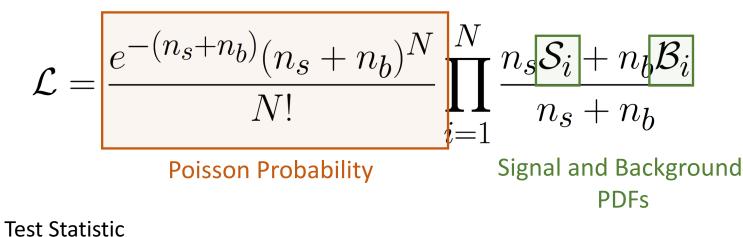
$$TS = 2ln\left(\frac{\mathcal{L}}{\mathcal{L}(n_s = 0)}\right)$$

Likelihood Construction

Likelihood:

$$\mathcal{L} = \frac{e^{-(n_s + n_b)}(n_s + n_b)^N}{N!} \prod_{i=1}^N \frac{n_s S_i + n_b B_i}{n_s + n_b}$$
Signal and Background PDFs

$$S_i = \frac{1}{2\pi\sigma^2} e^{\frac{\Delta\psi^2}{2\sigma^2}} \varepsilon(\delta|\gamma)$$


$$B_i = \frac{1}{2\pi} B_{space}(\delta) \,\varepsilon(\delta)$$

Test Statistic

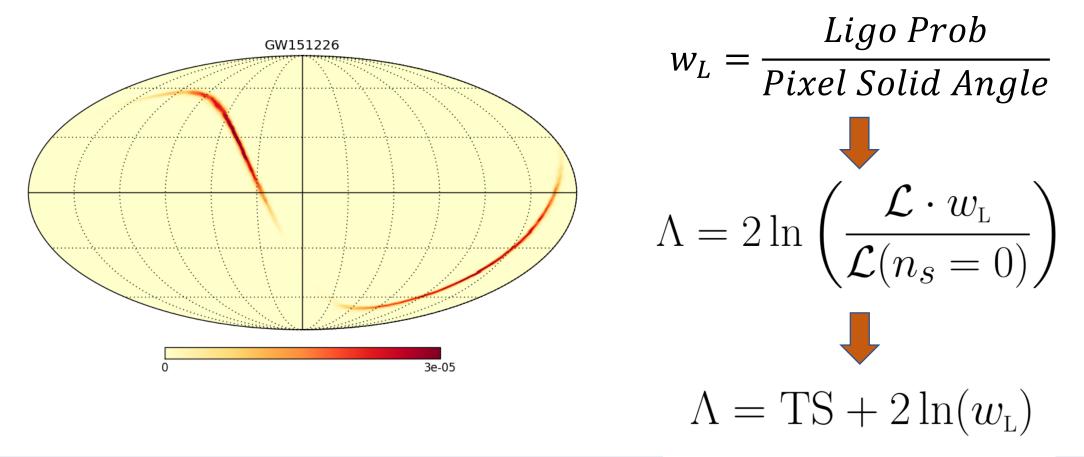
$$TS = 2ln\left(\frac{\mathcal{L}}{\mathcal{L}(n_s = 0)}\right)$$

Likelihood Construction

Likelihood:

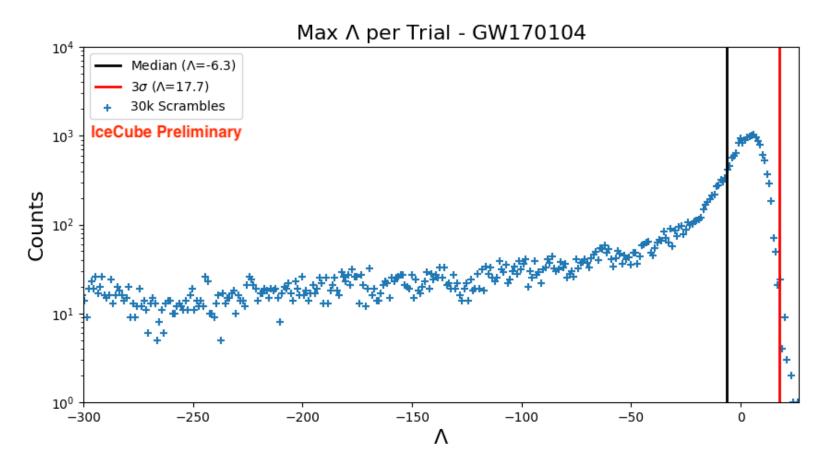
$$S_i = \frac{1}{2\pi\sigma^2} e^{\frac{\Delta\psi^2}{2\sigma^2}} \varepsilon(\delta|\gamma)$$

$$B_i = \frac{1}{2\pi} B_{space}(\delta) \,\varepsilon(\delta)$$

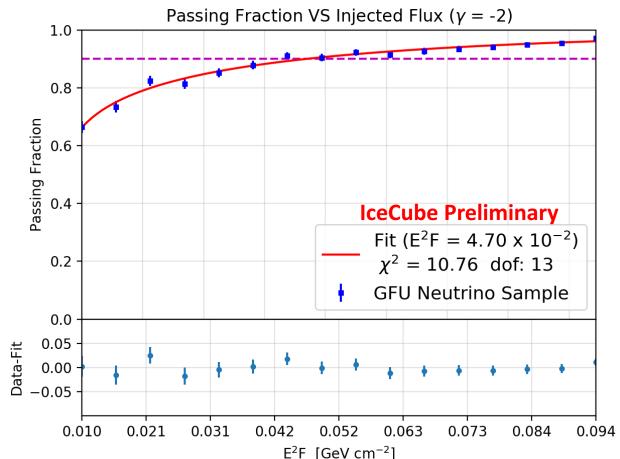

 n_s , n_b : Expected number of signal and background events

$$TS = 2ln\left(\frac{\mathcal{L}}{\mathcal{L}(n_s = 0)}\right)$$

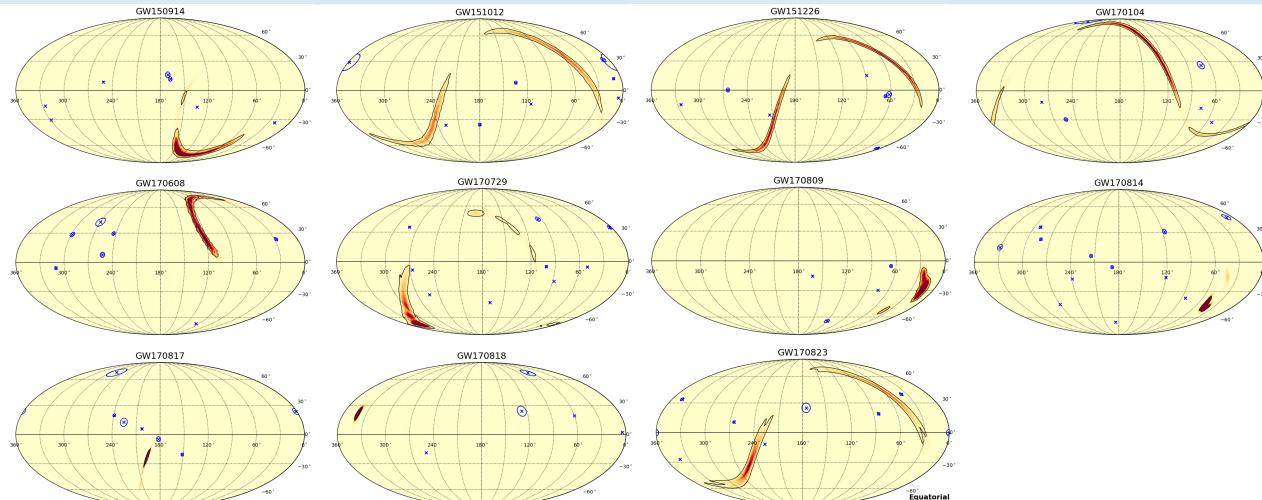
Free Parameters:
$$n_s, \gamma$$


Adding Spatial Prior

We incorporate the LVC probability skymap as a spatial prior to the likelihood at every point in the sky:

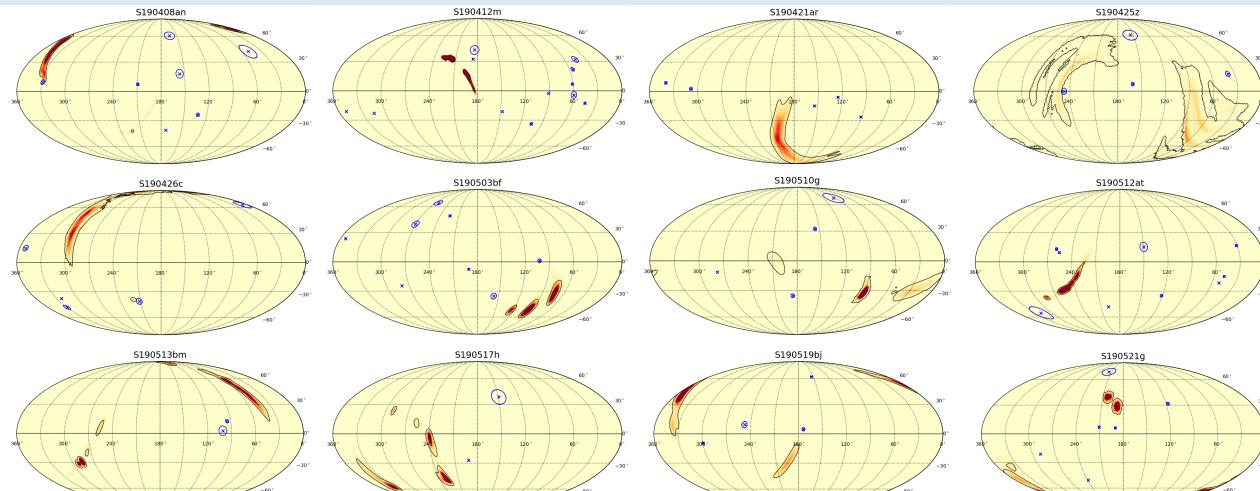

Example: GW170104

For every GW event we build a background Λ distribution using 30k neutrino scrambles and a fixed GW skymap

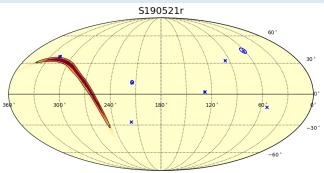


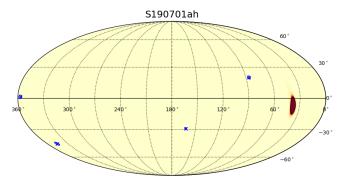
Example: GW170104

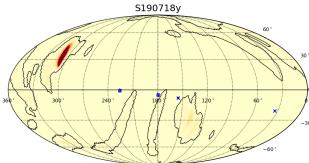
- Compute 90% C.L. sensitivity flux, E^2F , by injecting neutrinos from Monte Carlo
- Inject neutrinos until 90% of trials return a Λ greater than the median of the background
- For Upper Limits:
 - For upper limits we use the observed Λ as the threshold rather than the median $_{\pm}$
 - If $\Lambda_{obs} < \Lambda_{median}$ then we use Λ_{median} as the threshold to be conservative

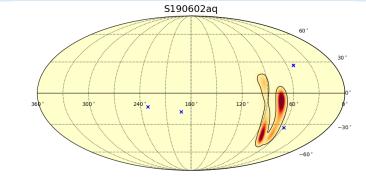


Results: 01+02


IceCube Preliminary


Results: O3




IceCube Preliminary

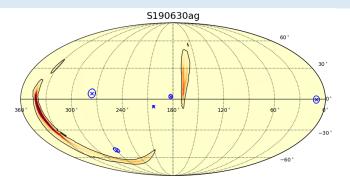
Results: O3

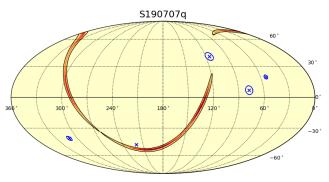
S190706ai

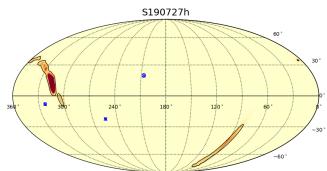
S190720a

180

120


120°


× 60


60

-30

-30

IceCube Preliminary

0

240

Raamis Hussain

Neutrino Follow up to the First 29 Gravitational Wave Events

Results 01+02

No significant neutrino correlation is found for the 33 GW events analyzed. Below are the results for the O1 + O2 observing run

GW Event List											
Event	Туре	Ω (deg ²)	FAR (yr^{-1})	p-Value	90% U.L. (GeVcm ⁻²)	90% U.L. _{min} (GeVcm ⁻²)	90% U.L. _{max} (GeVcm ⁻²)	$E_{\rm iso}$ (ergs)			
GW150914	BBH	180	$<1.00 \text{ x } 10^{-7}$	0.62	0.579	0.0296	1.03	1.60 x 10 ⁵²			
GW151012	BBH	1555	$7.92 \text{ x } 10^{-3}$	0.71	0.182	0.0286	0.821	8.14 x 10 ⁵²			
GW151226	BBH	1033	$<1.00 \text{ x } 10^{-7}$	0.68	0.156	0.0286	0.904	$1.45 \ge 10^{52}$			
GW170104	BBH	924	$<1.00 \text{ x } 10^{-7}$	0.54	0.0470	0.0286	0.667	7.11 x 10 ⁵²			
GW170608	BBH	396	$< 1.00 \text{ x } 10^{-7}$	0.61	0.0360	0.0309	0.0821	9.40 x 10^{51}			
GW170729	BBH	1033	$1.80 \ge 10^{-1}$	0.21	0.619	0.0286	1.02	5.39 x 10 ⁵³			
GW170809	BBH	340	$<1.00 \text{ x } 10^{-7}$	0.60	0.263	0.0568	0.758	8.21 x 10 ⁵²			
GW170814	BBH	87	$< 1.00 \text{ x } 10^{-7}$	0.83	0.461	0.488	0.711	2.94 x 10 ⁵²			
GW170817	BNS	16	$<1.00 \text{ x } 10^{-7}$	0.19	0.277	0.180	0.429	$1.37 \ge 10^{50}$			
GW170818	BBH	39	$4.20 \ge 10^{-5}$	0.52	0.0275	0.0364	0.0431	9.04 x 10 ⁵²			
GW170823	BBH	1651	$<1.00 \text{ x } 10^{-7}$	0.75	0.180	0.0286	0.796	2.46 x 10 ⁵³			

FAR: False Alarm Rate of GW ; E_{iso} : Isotropic equivalent energy emitted by GW source

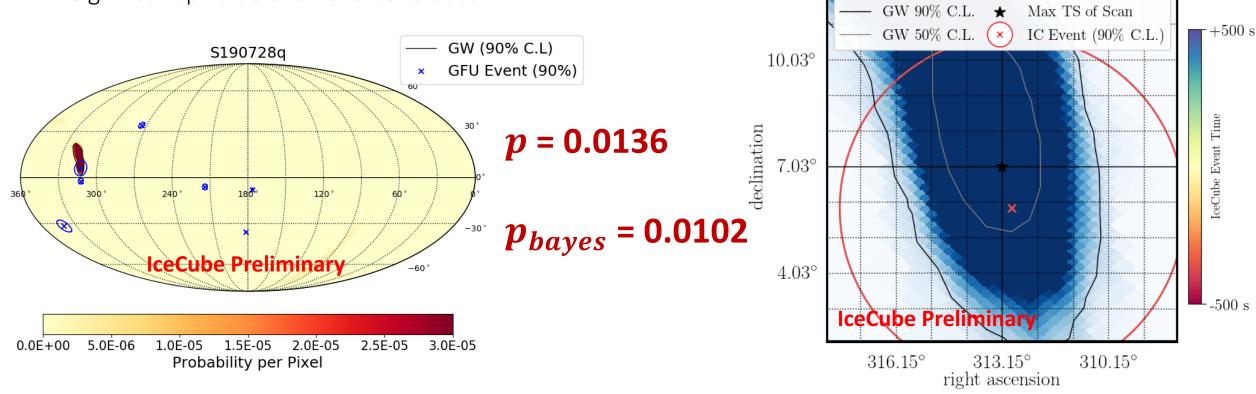
Results: O3

U.L. min and max are U.Ls assuming point source hypothesis in 90% GW contour

 E_{iso} U.L is computed by computing the expected number of events at IceCube, marginalized over the 3D position of the GW source

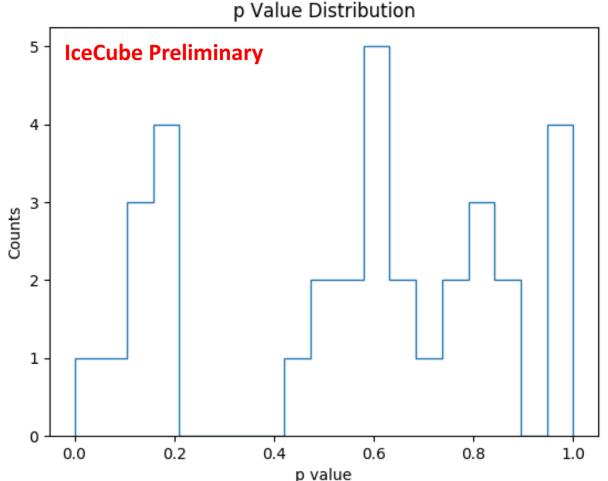
L								
Event	Туре	Ω (deg ²)	FAR (yr^{-1})	p-Value	90% U.L. (GeVcm ⁻²)	90% U.L. _{min} (GeVcm ⁻²)	90% U.L. _{max} (GeVcm ⁻²)	$E_{\rm iso}$ (ergs)
S190408an	BBH	387	<1.00 x 10 ⁻⁷	0.13	0.0625	0.0337	0.606	1.81 x 10 ⁵³
S190412m	BBH	156	<1.00 x 10 ⁻⁷	0.18	0.0423	0.0286	0.048	5.39 x 10 ⁵²
S190421ar	BBH	1444	$4.70 \mathrm{x} \ 10^{-1}$	0.79	0.652	0.0420	1.15	1.65 x 10 ⁵³
S190425z	BNS	7461	1.43×10^{-5}	0.87	0.383	0.0286	1.06	1.90 x 10 ⁵¹
S190426c	BNS	1131	6.14 x 10 ⁻¹	0.12	0.0685	0.0286	0.583	1.10 x 10 ⁵²
S190503bf	BBH	448	5.16×10^{-2}	0.49	0.581	0.227	0.821	1.43 x 10 ⁵²
S190510g	Ter	1166	$2.79 \text{ x } 10^{-1}$	0.86	0.401	0.0286	0.610	2.76×10^{51}
S190512at	BBH	252	$6.00 \text{ x } 10^{-2}$	0.84	0.341	0.0286	0.568	1.51 x 10 ⁵³
S190513bm	BBH	691	$1.18 \ge 10^{-5}$	1.0	0.187	0.0286	0.505	3.16 x 10 ⁵³
S190517h	BBH	939	$7.49 \text{ x } 10^{-2}$	0.21	0.613	0.0286	1.06	5.78 x 10 ⁵³
S190519bj	BBH	967	$1.80 \ge 10^{-1}$	0.45	0.108	0.0286	0.639	8.15 x 10 ⁵³
S190521g	BBH	765	$1.20 \ge 10^{-1}$	0.61	0.538	0.0391	0.966	1.14 x 10 ⁵⁴
S190521r	BBH	488	$1.00 \ge 10^{-2}$	0.095	0.0654	0.0286	0.456	$1.07 \ge 10^{53}$
S190602aq	BBH	1172	$<1.00 \text{ x } 10^{-7}$	0.15	0.344	0.0286	0.732	$4.84 \ge 10^{52}$
S190630ag	BBH	1483	4.53 x 10^{-6}	0.63	0.307	0.0286	0.977	6.73×10^{52}
S190701ah	BBH	67	$6.04 \text{ x } 10^{-1}$	1.0	0.0530	0.0286	0.176	2.81×10^{53}
S190706ai	BBH	1100	6.00×10^{-2}	1.0	0.199	0.0350	0.881	2.09×10^{54}
S190707q	BBH	1375	$1.66 \ge 10^{-4}$	0.55	0.334	0.0286	0.763	4.99×10^{52}
S190718y	Ter	7246	1.15	0.67	0.135	0.0286	1.15	1.42×10^{51}
S190720a	BBH	1559	0.120	0.96	0.358	0.0286	1.08	6.29×10^{52}
S190727h	BBH	841	$4.34 \text{ x } 10^{-3}$	0.77	0.592	0.0350	0.983	9.83 x 10 ⁵²
S190728q	BBH	104	$<1.00 \text{ x } 10^{-7}$	0.014	0.0520	0.0295	0.0404	6.83×10^{52}

Most Significant Event


Early Sunday morning, LVC sent a notice for a potential NS-BH merger event

Neutrino follow up resulted in most significant p value of all events to date

GCN Circular was sent with results from both follow up analyses


GCN: <u>https://gcn.gsfc.nasa.gov/gcn3/25210.gcn3</u>

Zoomed Scan Results

Realtime O3 Analyses

- This analysis is run in realtime to respond to GW events during the O3 science run
- Bayesian analysis runs in parallel
- For each event in O3, a GCN circular is sent with results from both analyses
- So far, p values seem uniformly distributed. More stats are needed to study population of GW events

Summary

- Performed neutrino follow up to all reported GW events
 - No significant neutrino correlation is found
- Automated analysis responds to GW events with low latency
 - GCN circulars are sent with results from both realtime analyses
 - 22 GW events so far
 - Estimated rates at start of 03 run:
 - BBH: ~1/week
 - BNS: ~1/month
- Planning another analysis searching for neutrino emission over longer timescales
 - If neutrino emission occurs during kilonova phase of BNS merger, a dedicated long timescale analysis would be far more sensitive