From the observation of UHECR radio signal in [1-200] MHz to the composition: CODALEMA/EXTASIS status report

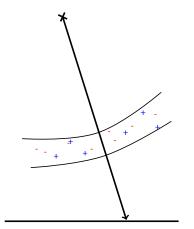
Antony Escudie¹

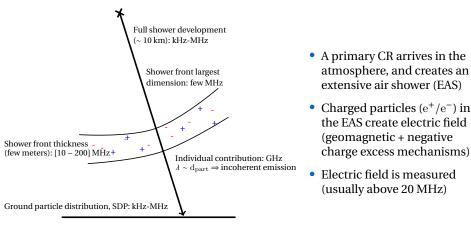
D. Charrier^{1,3}, R. Dallier^{1,3}, D. García-Fernández¹, A. Lecacheux², L. Martin^{1,3} and B. Revenu^{1,3}

¹ SUBATECH, Institut Mines-Telecom Atlantique – CNRS/IN2P3 – Université de Nantes, Nantes, France ² CNRS - Observatoire de Paris-Meùdon, France ³ Unité Scientifique de Nancay, Observatoire de Paris, CNRS, PSL, UO/OSUC, Nançay, France

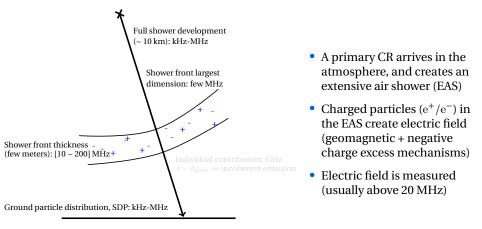
July 22, 2019

ICRC2019 - CRI7h

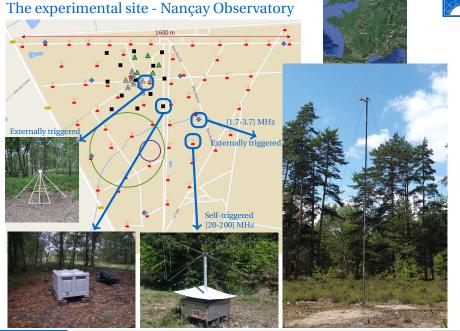



Radio-detection of cosmic-rays

- A primary CR arrives in the atmosphere, and creates an extensive air shower (EAS)
- Charged particles (e⁺/e⁻) in the EAS create electric field (geomagnetic + negative charge excess mechanisms)



Radio-detection of cosmic-rays

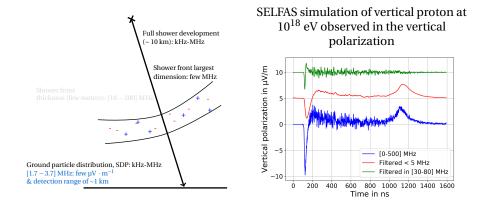


Radio-detection of cosmic-rays

- Arrival direction (θ, ϕ) , core position, composition (X_{max}) , energy
- Different frequencies probe different properties of the shower

Antony Escudie

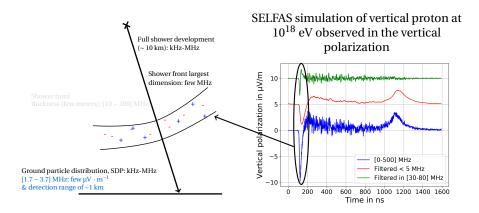
EXTASIS status report


[1.7 – 3.7] MHz

Published in Astroparticle Physics, *Radio detection of cosmic rays in [1.7-3.7] MHz: the EXTASIS experiment*, **Astroparticle Physics**, **113:6 - 21, 2019**

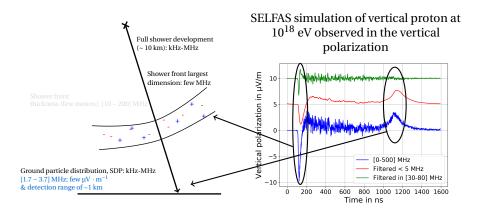
EXTASIS - [1.7 - 3.7] MHz

What we are trying to detect...



EXTASIS - [1.7 - 3.7] MHz

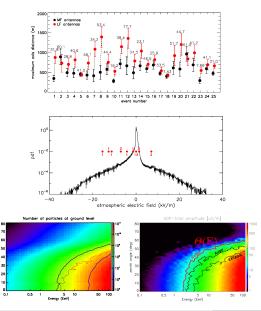
What we are trying to detect...



Shower development counterpart

EXTASIS - [1.7 - 3.7] MHz

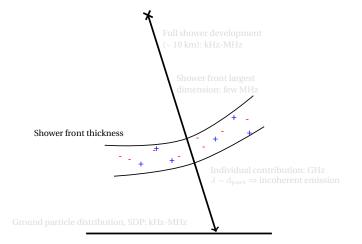
What we are trying to detect...



- Shower development counterpart
- Sudden Death (SDP) counterpart: due to the sudden disappearance of the charged particles on the ground

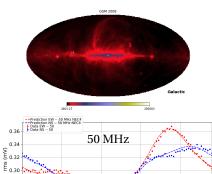
Summary of the results obtained in the LF band

- 25 LF events observed over 2 years in correlation with cosmic-ray events
- Only one reconstructible LF event: detection threshold of $23 \pm 4 \ \mu V \cdot m^{-1}$
- Detection range at LF larger than at MF confirmed
- Harsh atmospheric noise conditions hamper the LF detection
- Strong correlation with the atmospheric electric field
- SDP: higher altitude sites much more favourable: Auger $(3000 \text{ km}^2) \sim 2600 \text{ detectable}$ showers per year, GRAND $(200 \text{ km}^2) \sim 350 \text{ detectable}$ showers per year



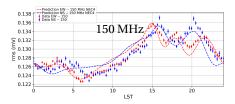
Antony Escudie

CODALEMA status report


[20 - 200] MHz

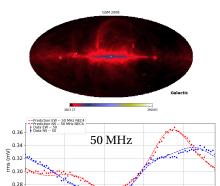
20

Calibration of the radio antennas


10

LST

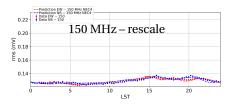
0.28


0.26

- Use of the Galactic radio emission as a source for the calibration of the radio detectors of CODALEMA
- Galactic model: GSM (arXiv0802.1525)
- NEC4: Antenna model + nearby environment (elec. crate, ground)

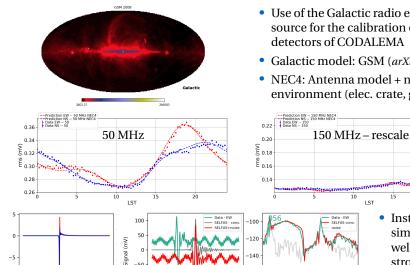
Calibration of the radio antennas

10


LST

15

20


0.26

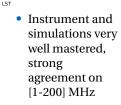
- Use of the Galactic radio emission as a source for the calibration of the radio detectors of CODALEMA
- Galactic model: GSM (arXiv0802.1525)
- NEC4: Antenna model + nearby environment (elec. crate, ground)

Calibration of the radio antennas

-50

-100

100 200 300 400 500


SELFAS - EW

- Use of the Galactic radio emission as a source for the calibration of the radio detectors of CODALEMA
- Galactic model: GSM (arXiv0802.1525)
- NEC4: Antenna model + nearby environment (elec. crate, ground)

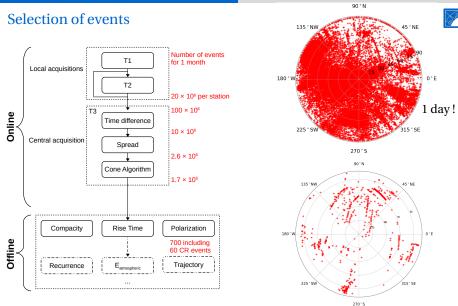
10

Data - EW

SFI FAS conv

20

100 Antony Escudie


200 300 400

-10

0

50 100 150 200

-160

 \Rightarrow 5 orders of magnitude reduction, able to get rid of particle detectors !

Estimating the shower parameters Example event 400

200 400 600 800 1000

Easting (m)

0

7

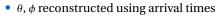
0

200

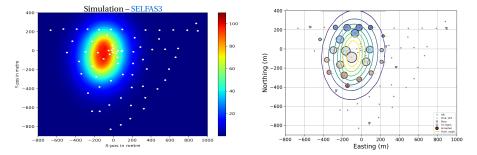
0

-400

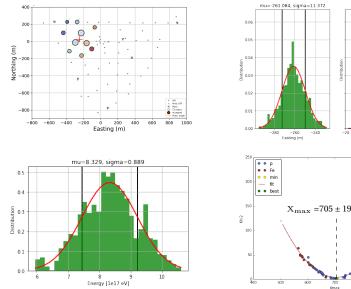
-600

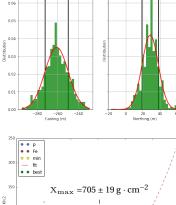

-800

-800


-600 -400 -200

Vorthing (m) -200


- Core position, composition (X_{max}) and energy reconstructed trough MC simulations
- Generalized method: decoupling both polarizations (no more quadratic sum) and use of [120 – 200] MHz band



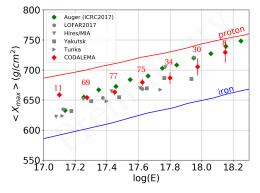
mu=28.583, sigma=9.472

Estimating the shower parameters

800

10 / 13

1000


Estimating the shower parameters

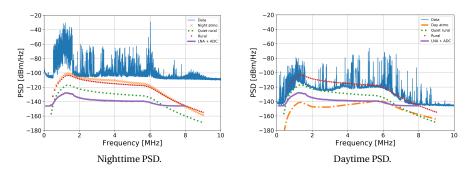
- E_{radio} compares well with $E_{particles}$ within the scintillator array acceptance and resolution: E_{radio} deduced from simulations seems reliable
- A large batch of radio events (294 events) has been collected over a large energy window
- ⇒ Towards mass composition with CODALEMA

Estimating the shower parameters

- E_{radio} compares well with E_{particles} within the scintillator array acceptance and resolution: Eradio deduced from simulations seems reliable
- A large batch of radio events (294 events) has been collected over a large energy window
- \Rightarrow Towards mass composition with CODALEMA
- CODALEMA in agreement with other experiments in $\log_{10} E \in [17.0 - 18.2]$
- · Lighter composition with increasing energy
- Mass component proportion ۲ available soon, work in progress

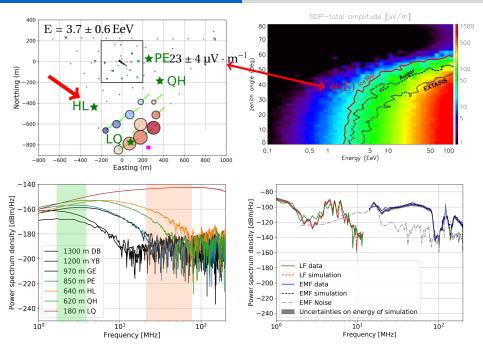
- CODALEMA&EXTASIS: very wide [1.7-3.7] + [20 200] MHz, routinely multi-wavelength observation of cosmic-ray air-showers in 10¹⁶ – 10¹⁸ eV, self-triggered stations in [20 – 200] MHz
- Instrument and simulations very well mastered, strong agreement
- Estimation of shower parameters using the radio signals (θ , ϕ , (X_{core}, Y_{core}), X_{max}, Energy) in [20 200] MHz, using both polarizations independently \Rightarrow CR composition from CODALEMA in agreement with other experiments
- Low-frequency band:
 - Signal seems not very promising, only 25 events over 2 years + strong correlation with $\rm E_{atm}$
 - Detection range larger
 - SDP: higher altitude sites, Auger? GRAND?

Thank you



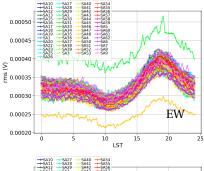
EXTASIS

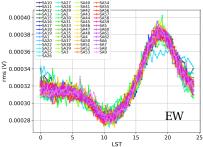
Atmospheric noise

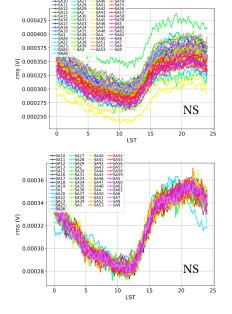


- Dominated by atmospheric and man-made noises (not the Galactic one) •
- Atmospheric noise lower during day than night \Rightarrow duty cycle \leq 50 % ۲
- Analysis band: [1.7 3.7] MHz •

Back-up slides

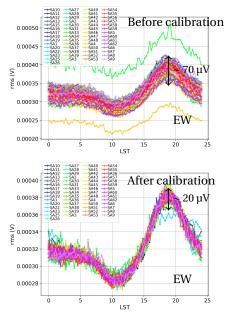

EXTASIS

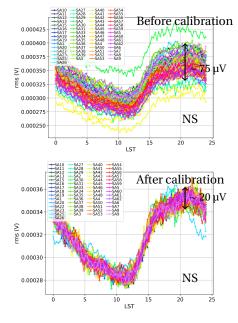



Back-up slides C

Calibration

Calibration of the SA



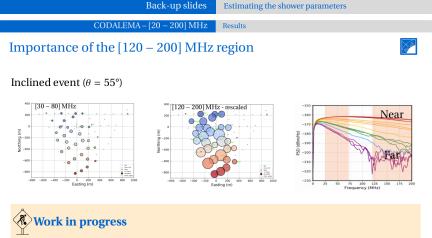


Back-up slides C

Calibration

Calibration of the SA

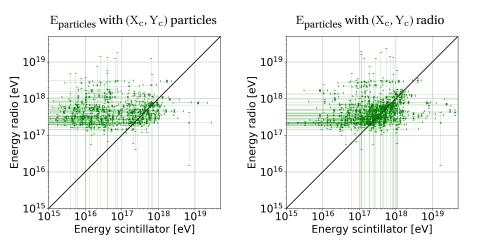




Back-up slides

Selection of events

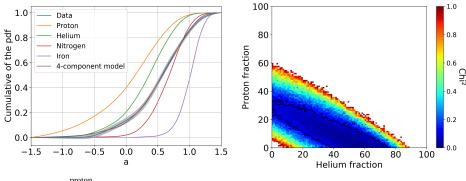
- Rise time: ~ 10 nanoseconds
- Polarizations: relative contribution of both mechanisms + fortuitous, presence of abnormal atmospheric electric field
- Compacity: regular pattern at ground for showers
- Test: 1 704 838 events recorded over 1 month ⇒ 701 (0.04 %) events selected, no cosmic ray event rejected (58 remaining)


Radio-reconstruction of inclined event in [30 - 80] MHz difficult

Radio-reconstruction much better including the HF band: $\chi^2_{[30-200]} = \chi^2_{[30-80]}/3$

Continuity in the spectra, their content is precious \Rightarrow only CODALEMA can do that!

One-to-one correlation between E_{radio} and $\mathrm{E}_{particles}$



Towards the composition

Mass component proportion

Analysis "a la LOFAR", Nature vol-531, 2016

- $a = \frac{\langle X_{max}^{proton} \rangle X_{max}}{\langle X_{max}^{proton} \rangle \langle X_{max}^{iron} \rangle}$
- Use of EPOS-LHC
- Four component model tested: best fit with 1 % Protons, 50 % Helium, 33 % Nitrogen and 16 % Iron
- Systematic uncertainties and improvement of the statistical analysis in progress