Dark matter search at LHAASO Xiao-Jun Bi Institute of High Energy Physics, Chinese Academy of Science, Beijing The 36th International Cosmic Ray Conference, Madison, Wisconsin, USA 2019/7/24-8/1 He, Bi, Lin, et al, arXiv: 1903.11910 ## LHAASO Large High Altitude Air Shower Observatory # Measurement of EASs at High Altitude • Mt. Haizi (4410 m a.s.l., 29°21' 27.6" N, 100°08'19.6" E), Sichuan, China • 1/4 array will be completed soon; the project will be finished by 2021. #### sky survey, extended, transient | | | ARGO | AS+MD | HAWC | LHAASO | CTA | |--------------------------|---------|----------------------|-----------------------|-----------------------|-------------------|--------------------| | Area | | 6,500 m ² | 50,000 m ² | 22,500 m ² | 1 km ² | 10 km ² | | s _θ (deg) | | 0.2-0.5 | 0.2-0.5 | 0.1-0.5 | 0.1-0.5 | 0.05 | | BG rejection power | | | 104 | 100 | 100/104 | 100 | | Duty Cycle | | >90% | >90% | >90% | >90% | 10% | | FOV (sr) | | 2 | 2 | 2 | 2 | 0.015 | | Sensitivity (c.u.) | @TeV | 0.55 | | 0.06 | 0.01 | 0.001 | | | @100TeV | | 0.25 | | 0.01 | 0.3 | | Energy resolution | | 30% | 30% | >50% | 30% | 15% | SED, morphology #### LHAASO: Large High Altitude Air Shower Observatory ## Major Scientific Goals #### Origin of GCRs - Searching for GCR sources by measuring SED with an unprecedented sensitivity of 1% I_{Crab} at 50 TeV - Energy spectra for individual compositions with energy from 10 TeV to 1 EeV, where the spectrum knees are located #### Gamma ray astronomy Searching for TeV γ sources, especially extended and transient ones, with an unprecedented survey sensitivity of 1% I_{Crab} at 3TeV. #### New physics frontier dark matter, Lorentz invariance, new physics beyond LHC energy, etc Details about LHAASO see, Huihai He, GAI1a: Status and First Results of the LHAASO Experiment Dark matter indirect detection looks for the DM annihilation products $$c^{0}c^{0} \otimes l\bar{l}, q\bar{q}, 2W^{\pm}, 2Z^{0}, 2H^{0}, Z^{0}H^{0}, W^{+}H^{-}, gg$$ ## Indirect detection of dark matter -- signals definitive signal LHAASO does not have charge discrimination, it is better to search gamma ray signals from dark matter! ## Different targets - Galactic center(high signal, high background) - Dwarf galaxies (DM dominates, no astrophysical background) - Subhalos (blind search, difficult to identify) - Halo diffuse gamma (low signal, low background) - Extragalactic (large uncertainty in signal and background) ## Known satellites on the sky All the dwarf galaxies are possible gamma ray sources by DM annihilation. # Dwarf galaxies in the FOV of LHAASO TABLE I. The astrophysical properties of nineteen selected dSphs within the LHAASO FOV. The name, right ascension (RA.), declination (DEC.), maximum angular radius (θ_{max}), and J-factor of the dSphs are listed below. The J-factor and θ_{max} of the dSphs are taken from Ref. [34]. However, for the four dSphs marked with asterisks whose J-factors are not given in Ref. [34], we utilize the calculated results from Ref. [35]. | | RA. | DEC. | θ_{max} | $\log_{10} J_{\mathrm{obs}}$ | |-------------------|--------|-------|-------------------------|------------------------------| | Source | (deg) | (deg) | (deg) | $(\mathrm{GeV^2cm^{-5}})$ | | Boötes I | 210.02 | 14.50 | 0.47 | 18.2 ± 0.4 | | Canes Venatici I | 202.02 | 33.56 | 0.53 | 17.4 ± 0.3 | | Canes Venatici II | 194.29 | 34.32 | 0.13 | 17.6 ± 0.4 | | Coma Berenices | 186.74 | 23.90 | 0.31 | 19.0 ± 0.4 | | Draco | 260.05 | 57.92 | 1.30 | 18.8 ± 0.1 | | Draco II* | 238.20 | 64.56 | _ | 18.1 ± 2.8 | | Hercules | 247.76 | 12.79 | 0.28 | 16.9 ± 0.7 | | Leo I | 152.12 | 12.30 | 0.45 | 17.8 ± 0.2 | | Leo II | 168.37 | 22.15 | 0.23 | 18.0 ± 0.2 | | Leo IV | 173.23 | -0.54 | 0.16 | 16.3 ± 1.4 | | Leo V | 172.79 | 2.22 | 0.07 | 16.4 ± 0.9 | | Pisces II* | 344.63 | 5.95 | _ | 16.9 ± 1.6 | | Segue 1 | 151.77 | 16.08 | 0.35 | 19.4 ± 0.3 | | Sextans | 153.26 | -1.61 | 1.70 | 17.5 ± 0.2 | | Triangulum II* | 33.32 | 36.18 | _ | 20.9 ± 1.3 | | Ursa Major I | 158.71 | 51.92 | 0.43 | 17.9 ± 0.5 | | Ursa Major II | 132.87 | 63.13 | 0.53 | 19.4 ± 0.4 | | Ursa Minor | 227.28 | 67.23 | 1.37 | 18.9 ± 0.2 | | Willman 1* | 162.34 | 51.05 | _ | 19.5 ± 0.9 | He, Bi, Lin, et al, arXiv: 1903.11910 ## Signals and background #### DM signals $$\phi_{s}(\Delta\Omega) = \underbrace{\frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\rm DM}^{2}} \int_{E_{\rm min}}^{E_{\rm max}} \frac{{\rm d}N_{\gamma}}{{\rm d}E_{\gamma}} {\rm d}E_{\gamma}}_{\Phi_{\rm PP}} \cdot \underbrace{\int_{\Delta\Omega} \left\{ \int_{\rm l.o.s} \rho^{2}(r) {\rm d}l \right\} {\rm d}\Omega'}_{\rm J-factor}.$$ $$S = \epsilon_{\Delta\Omega} \int_{E_{\rm min}}^{E_{\rm max}} \Phi_{\gamma}(E) \cdot A_{\rm eff}^{\gamma}(E) \cdot \varepsilon_{\gamma}(E) dE \times T$$ $$B = \int_{E_{\min}}^{E_{\max}} \int_{\Delta\Omega} \zeta_{cr} \cdot \Phi_p(E) \cdot A_{\text{eff}}^p(E) \cdot \varepsilon_p(E) d\Omega dE \times T$$ #### Performance of LHAASO γ/p separation and angular resolution Above ~500GeV, we adopt $\epsilon p=0.28\%$ (99.72% rejected) for $\epsilon \gamma \sim 40\%$ 1905.02773, LHAASO science white book #### Performance of LHAASO Effective areas for different zenith angles for the gamma ray and protons #### Method to set bound Define likelihood of a signal as $$\mathcal{L}(\mathbf{S}|\mathbf{B}, \mathbf{N}) = \prod_{i} \frac{(B_i + S_i)^{N_i} \exp[-(B_i + S_i)]}{N_i!}$$ - Bi is expected background events, Si is the expected signal events, Ni is the observed events - uncertainty of dark matter density profile of dwarf galaxies are taken into account $$\mathcal{L}_{j} = \prod_{i} \mathcal{L}_{ij}(S_{ij}|B_{ij}, N_{ij}) \times \mathcal{J}(J_{j}|J_{\text{obs},j}, \sigma_{j})$$ • Combine 19 dwarfs, $\mathcal{L}^{\text{tot}} = \prod_{j} \mathcal{L}_{j}$ $2\left(\ln \mathcal{L}_{\text{max}} - \ln \mathcal{L}_{95}\right) = 2.71$ ## Sensitivity of dark matter signal We consider bb, tt, ww, µµ, tautau final states ## Sensitivity of dark matter Compare with other exps, LHAASO is more sensitivy for DM mass above ~TeV ## Summary - Dark matter search is one most important scientific goal of LHAASO. We give sensitivity calculation of LHAASO based on simulation results. - Gamma rays from dwarf galaxies are the most promised signal which may be detected at LHAASO. LHAASO has large F.O.V and can probe many dwarf galaxies at the same time. - LHAASO is more sensitive than other detectors if DM mass is above 1~5TeV depending on final states.