Multi-Messenger Connections among High-Energy Cosmic Particles

A AX A

Kohta Murase

Penn State University

July 25 @ Madison

High-Energy Cosmic Particle Backgrounds

Particle energy budgets are roughly comparable (10⁴³ -10⁴⁴ erg Mpc⁻³ yr⁻¹)

Cosmic-Ray Reservoirs

Neutrino-Gamma-UHECR Connection?

(grand-)unification of neutrinos, gamma rays & UHECRs simple flat energy spectrum w. s~2 can fit all diffuse fluxes

- Explain >0.1 PeV v data with a few PeV break (theoretically expected)
- Escaping CRs may contribute to the observed UHECR flux

Neutrino-Gamma-UHECR Connection?

(grand-)unification of neutrinos, gamma rays & UHECRs simple flat energy spectrum w. s~2 can fit all diffuse fluxes

- Explain >0.1 PeV v data with a few PeV break (theoretically expected)
- Escaping CRs may contribute to the observed UHECR flux

KM & Waxman 16 PRD

 $\begin{array}{l} \text{PeV}\nu-\text{confined CR}\\ \text{UHECR}-\text{escaping CR}\\ \text{sub-TeV}\gamma-\text{``sum''} \end{array}$

cf. Yoshida & KM: ICRC for CR "accelerator" case

Ex. AGN Embedded in Galaxy Clusters/Groups

Unifying >0.1 PeV v, sub-TeV γ , and UHECRs (including 2nd knee & composition)

600↓ 17.5

18.0

18.5

log E[eV]

19.0

19.5

20.0

- escaping nuclei: "hard" spectrum \rightarrow Auger X_{max}
- smooth transition from source v to cosmogenic v

Neutrino Tests: Detectability of Neutrino Sources

 γ -ray spectra of pp sources should be hard: s<2.1-2.2 (KM, Ahlers & Lacki 13) \rightarrow nearby "representative" sources w. s~2.0-2.1 are promising

- Current IceCube may see $\sim 2-3\sigma$ fluctuations (ex. NGC 1068?)
- IceCube-Gen2 is necessary for discoveries anyway

Gamma-Ray Tests: Importance of TeV Observations

Starbursts & galaxy clusters/groups: γ -ray transparent up to ~1-100 TeV s~2-2.1 \rightarrow promising for γ -ray targeted (point-source & stacking) searches

- About 10 representative sources should be seen by CTA
- Possible to have strong constraints even w. current IACTs

Medium-Energy Excess Problem

10-100 TeV shower data: large fluxes of ~10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹

KM, Guetta & Ahlers 16 PRL

Fermi diffuse γ -ray bkg. is violated (>3 σ) if ν sources are γ -ray transparent

\rightarrow existence of "hidden (γ -ray dark) sources"

(v data above 100 TeV can be explained by γ -ray transparent sources)

Hidden Cosmic-Ray Accelerators?

Low-power GRBs (choked jets) Supermassive black hole cores Stellar envelope dec Γβ let head Comptonized X rays CR-induced cascade γ Z Collimated jet corona optical/UV Collimation shock Radiation M.M. accretion Internal shocks black hole disk Coccon Pre-collimated jet 10⁻⁵ Kimura, KM & Toma 15 ApJ Hidden Source Model A (AGN Cores Hidden Source Model B (Choked Jets) KM & loka 13 PRL Hidden Source Model C (LL GRBs) 10⁻⁶ KM+06 ApJL $E^2 \Phi [GeV cm^{-2} s^{-1} sr^{-1}]$ 10⁻⁷ 10⁻⁸ 10⁻⁹ see also: see also: Bhattacharya+ 15 Stecker 13 10⁻¹⁰ 10³ 10⁶ Nakar 15 10⁵ 10⁸ Kalashev+15 10⁴ 10^{7} Senno, KM & Meszaros 16 KM, Kimura & Meszaros 19 E [GeV]

Vicinity of Supermassive Black Holes

Cores of active galactic nuclei (mainly radio-quiet AGNs)

Particle Acceleration in RIAFs/Coronae

Magnetorotational Instability (MRI) -> turbulence & reconnection collisionless for ions -> particle acceleration

Low-luminosity AGN

accretion disk is "radiatively inefficient" low density: collisionless

Seyfert/Quasar (radio-quiet AGN)

standard accretion disk: collisional but coronal region: collisionless

stochastic acc. w. PIC simulations

Hoshino 12 PRL

stochastic acc. w. global MRI simulations

Kimura, KM & Tomida 19 MNRAS

TeV Neutrino – "MeV" Gamma-Ray Connection

KM, Kimura & Meszaros 19

 10-100 TeV v by X rays from coronae & MeV γ by UV from accretion disks ("unique" consequence of disk-corona SEDs)

• X/MeV γ and 10-100 TeV ν backgrounds can be simultaneously explained

Detectability of Nearby Radio-Quiet AGN

• Bethe-Heitler dominance (consequence of disk-corona SEDs) \rightarrow "Robust" MeV γ -ray connection: detectable by AMEGO etc.

• Neutrinos: stacking on X-ray AGNs & point-source searches w. Gen2

Applications to Low-Luminosity AGNs

- CR-induced cascade *γ* rays are difficult to observe
- Detection of MeV γ due to thermal electrons is promising
- Neutrinos can be seen by IceCube-Gen2

Summary

Multi-messenger tests for the origin of IceCube neutrinos

>100 TeV neutrinos

- Consistent w. "predictions" of CR reservoirs (starbursts, clusters)
- Unification: connection to sub-GeV $\gamma\text{-ray}$ background and UHECRs
- Neutrinos: Gen2 is essential but maybe hints in IceCube data
- γ rays: CTA is essential but current IACTs probe special sources

<100 TeV neutrinos

- Hidden neutrino sources (choked GRB jets, AGN cores)
- AGN core models: unique connection to X/MeV $\gamma\text{-ray}$ backgrounds
- Nearby Seyferts should be detected by IceCube-Gen2 & AMEGO
- With the same physics low-luminosity AGNs are also detectable

Request for Gen2: ~0.1 deg resolution & keep threshold ~10 TeV