Searching for Variability of the Crab Nebula Flux at TeV Energies using MAGIC Very Large Zenith Angle Observations

36th International Cosmic Ray Conference July 29th, 2019

The Crab Nebula

36th ICRC July 29th, 2019 Madison, Wisconsin

The Crab Nebula

- Pulsar wind nebula
- SED well described by onezone synchrotron – SSC model
- Brightest persistent source in gamma rays
- 'Standard Candle' of VHE gamma-ray astronomy

Why search for variability?

36th ICRC July 29th, 2019 Madison, Wisconsin

 $log_{10}(v/Hz)$

Juliane van Scherpenberg

Meyer et al. (2010)

Flares in the Crab Nebula

36th ICRC July 29th, 2019 Madison, Wisconsin

Brightest Fermi flare: April 2011 (arxiv:1112.1979)

Using *naima*-package: Fermi-LAT data approximated by introducing additional e⁻population

With standard Crab nebula parameters: B \approx 125 μ G R \approx 2 pc

Inverse Compton component around ~PeV

Flares in the Crab Nebula

36th ICRC July 29th, 2019 Madison, Wisconsin

Standard Crab nebula parameters:

$$B_{Crab} \approx 125 \ \mu G$$

$$R_{Crab} \approx 2 pc$$

Short timescale of flares \rightarrow emission region << R_{Crab} R_{flare} $\sim 10^{-4}$ pc $\sim 10^{14}$ cm (plus locally strongly enhanced magnetic fields, Doppler boosting)

IC counterpart would appear in very high TeV energies

Difficulty: For low state Crab at 10 TeV <10 Events per hour per 1km² expected (at 300 GeV ~ 1 Event per second)

The MAGIC Telescopes

36th ICRC July 29th, 2019 Madison. Wisconsin

- Two Imaging Air Cherenkov Telescopes (IACTs) working in stereoscopic mode

- Energy range from 30 GeV to 100 TeV
- Energy resolution between 15% and 25%
- Field of view 3.5°
- Sensitivity of ~0.5% Crab Nebula Flux in 50hrs above ~400GeV
- Typical effective area: $10^3 10^5$ m²

VLZA Observations with the MAGIC Telescopes

36th ICRC July 29th, 2019 Madison, Wisconsin

VLZA = Very Large Zenith Angles: 70° - 80°

A new efficient tool to study the highest energy gamma rays

Larger distance from the air shower → boost in effective area to > 1km²

See also:

Crab spectrum at ~100 TeV Michele Peresano Presentation, GAI9d July 30th PoS(ICRC2019)759

VLZA-technique Martin Will Poster, Session 3, #86 July 30th & 31st PoS(ICRC2019)828

- Data taken between December 2014 and April 2018
- Zenith Angles: 70° 80°
- ~ 50 hours of good quality data

Light Curve:

- Energy threshold: 10 TeV
- Monthly bins

Light Curve:

- Energy threshold: 10 TeV
- Monthly bins

Constant Fit:

- Poisson statistics
- Maximum likelihood

Goodness of Fit:

- Simulation of equivalent LCs
- Compute logL for each \(\frac{1}{2}\)
- P-value from CDF of simulated logL-values

Fit:

- $F_{fit} = (0.25 \pm 0.03) \cdot 10^{-12} \text{ cm}^{-2} \text{ s}^{-1}$
- p = 0.99

$$X^2/Ndf = 21.27/20$$

Data in good agreement with a constant fit → No evidence for variability

Common quantification of variability:

→ Fractional Variation

$$F_{var} = \frac{\sqrt{\sigma^2 - \delta^2}}{\langle f \rangle}$$

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (f_i - \langle f \rangle)^2 \qquad \delta^2 = \frac{1}{N} \sum_{i=1}^{N} \delta_i^2$$

Mean squared deviation from fit

$$\delta^2 = \frac{1}{N} \sum_{i=1}^{N} \delta_i^2$$
Mean squared

uncertainty of data (only statistical here)

$$\langle f \rangle$$

Fitted flux

- Same set of simulated light curves as for goodness of fit estimation
- Calculate F_{var} for each
- From cumulative distribution obtain upper limits

99.7% upper limit for variability above 10 TeV: $F_{var} = 1.86$ (preliminary)

Which scale of fluctuations in the Crab nebula flux could we detect?

- Simulations of light curves as before, but allowing flux to fluctuate within certain range [-s, s]
 - $f = f_{fit} + \Delta f \cdot f_{fit}$, where Δf drawn from uniform distribution between [max(-1,-s), s]
- Produce distribution of fractional variation F_{var}
- Repeat for different scales
- Calculate probability for F_{var} distribution to overlap with F_{var} distribution from constant flux assumption

$$P_{\text{overlap}} \le 0.3\% \text{ for } s \ge 2.25$$

Sensitive to fluctuations on top of Crab nebula flux above 10 TeV within at least $2.25 \cdot f_{fit} = 0.56 \cdot 10^{-12} \text{ cm}^{-2} \text{ s}^{-1}$ (preliminary)

Sensitivity to fluctuations

36th ICRC July 29th, 2019 Madison, Wisconsin

Which scale of flux increase could we detect within a given time?

Compare distribution of expected number of On-source counts for certain flux increase to expectation for nominal flux above 10 TeV

- → For different flux increases
- → For different exposures

Note: 1h per night at VLZA

→ 5 nights for 5 hours of observation time

- VLZA observations open window for MAGIC towards the highest TeV energies
- Technique and analysis well under control
- No variability found in 3.5 year light curve
 - → Crab is still our "standard candle"
- Sensitive to overall fluctuations of within 2.25 · F_{crab}
- Sensitive to flares with factor ~3 flux increase in < 4 hours
- Still exploring possibilities of improving VLZA analysis to increase sensitivity
- Large and interesting data set → room for more detailed studies
- Will keep monitoring Crab nebula at VLZA
- Hope for Crab to be nice to us and bless us with a BIG flare!