EUSO-TA ground based fluorescence detector: analysis of the detected events

Francesca Bisconti (JEM-EUSO Coll.) Cosmic Ray Indirect - CRI3f July 26th, 2019 36th International Cosmic Ray Conference - ICRC2019 July 24th - August 1st, 2019 Madison, WI, U.S.A.

Overview

- Overview of the JEM-EUSO program
- Overview of the EUSO-TA experiment
- Description of the **detected cosmic ray events**
- Simulation results
- Method for the estimation of the energy threshold of the JEM-EUSO detectors
 - Correction for the actual part of the shower observed by ESUO-TA, rather than the whole shower
 - Correction for the atmospheric transmission

JEM-EUSO Program

Joint Experiment Missions for Extreme Universe Space Observatory

- EUSO-TA (2013)
- EUSO-Balloon (2014) ullet
- TUS (2016) •
- **EUSO-SPB** (2017) ۲
- Mini-EUSO (2019) •
- EUSO-SPB2 (2022) ullet
- K-EUSO (2023+) ullet
- POEMMA (2029+)

Ground based experiment EUSO-TA at Telescope Array site

• Location:

Telescope Array site, Utah, USA, in front of the **Black Rock Mesa** fluorescence detector station

- Characteristics:
 - Focal surface:
 36 Multi-Anode PMTs ⇒ 2304 pix.
 - **Optics**: 2 Fresnel lenses
 - Field of view: 10.5°
 - Time resolution: 2.5 µs
- Main purposes:
 - Tests of the JEM-EUSO system
 - Detection of cosmic rays

Events in the EUSO-TA's field of view

Telescope Array provided:

- \rightarrow External trigger
- → List of events in the EUSO-TA's FOV and reconstruction parameters In total 110 events

Candidate #00 Detected	vent	
EUSO-TA counterpart: Time: 08-26-49.3559 E0=10-18.06eV Rp=2.5km Pai=100.7deg Pai=34.5deg An:7.2deg CoreX:14.8, CoreY:-10	Bpackets-TA-ACQUISITION-20150513-080301-gaintable_20150510_1.txt-df15deg.root (Packet # 2219, GTU# 284114)	
15/05/14 †		
Candidate #00 EUSD-TA counterpart: Time: 05-27-03.7759 E0=10~17.80eV Rp=9.6km Psi=46.0deg Zen:44.4deg Au:120.6deg CereX:6.0, CoreY:-4.4	Bpackets-TA-ACQUISITION-20150514-050224-gantable_20150510_11.txt-ef15deg.root (Packet# 2668)	
Tandidate ≠01 > EUSO-TA counterpart: Time: 06-51-18.5287 E0=10^{-17}.34eV Rp=3.2km Pai=85.6deg Zen:18.5deg Azi:40.5deg CoreX:14.1, CoreY:-10	Jpackets-TA-ACQUISITION-20150514-050224-gaintable_20150510_11.tst-ef15deg.root (Packet# 1871) 6	

2015	/05	/13	t
ZUIU		1 10	

Candidate #00 Detected event

- EUSO-TA counterpart: allpackets-TA-ACQUISITION-20150513-080301-gaintable_20150510_1.txt-el15deg.root (Packet# 2219, GTU# 284114)
- Time: 08-26-49.3559
- E0=10^18.06eV
- Rp=2.5km
- Psi=100.7deg
- Zen:34.5deg
- Azi:7.2deg
- CoreX:14.8, CoreY:-10.9

Example of detected cosmic ray shower

CR events detected in 2015

Simulation performance and results

Simulation of the detected events provided:

- Information on the photon's production mechanism
- Information on the efficiency of the detector and detector's subsystems

Example of comparison between simulated and detected cosmic ray air shower

General results from the simulation of detected events

Photon origin				Efficiencies			
•	Fluorescence:	65-80%	. Depend on	•	Lens transmiss.:	~16%	Depend on
•	Scattered Cher.:	13-34%	geometry	•	Sensors:	25-27% [[]	and energy
•	Direct Cher.:	1-10%		•	Overall:	4-5%	(e.g. pile-up pixels)

ICRC2019 – Madison, WI, USA

Francesca Bisconti - EUSO-TA: analysis of the detected events

Impact parameter – Reconstructed energy (by TA)

- Total of events which crossed the EUSO-TA field of view: 110
 (→ 18 discarded because on edge of PDM or on inefficient MAPMTs) → 92 events in the analysis
- Detected events: 9 (small pixels' size optimized for observations from space + time resolution of 2.5 μ s decreases the signal/noise ratio + 0.2 μ s dead time inside each 2.5 μ s of acquisition time)

ICRC2019 – Madison, WI, USA

Equivalent energy of the showers

Equivalent energy of the showers

Distance shower axis along the telescope axis vs equivalent energy

G. Abdellaoui et al., Astropart. Phys. 102, 98-111 (2018)

Photon transmission by the atmosphere

Photon transmission by the atmosphere

Distance shower axis along the telescope axis vs equivalent energy with correction for atmospheric transmission

Summary

- Simulation of the cosmic ray events:
 - Study of the light components producing the signal
 - Efficiency of the detector (overall and subsystems)
- Study of the detection capabilities of the JEM-EUSO experiments using the events detected and not detected by EUSO-TA
 - Energy correction for actual portion of the shower observed rather than the whole shower including X_{max}
 - Energy correction for the atmospheric photon transmission
 - Separation between detected and undetected cosmic ray event is in agreement with measurements of lasers
 - More statistics of events and laser observations with EUSO-TA-2 will improve the estimation of the energy threshold, useful also for balloon- and space-based experiments

Backup slides

Photon transmission by the atmosphere

 $H \rightarrow X$ from Linsley parametrization – from CORSIKA

(US STANDARD ATMOSPHERE PARAMETERIZED BY LINSLEY) HEIGHT H IN KM GIVES THICKNESS OF ATMOSPHERE T IN G/CM**2 H = -5.8... 4.0 KM ---> X = -1.86556E+02 + 1.2227E+03 * EXP(-H / 9.9419E+00) H = 4.0... 10.0 KM ---> X = -9.49190E+01 + 1.1449E+03 * EXP(-H / 8.7815E+00) H = 10.0... 40.0 KM ---> X = 6.12890E-01 + 1.3056E+03 * EXP(-H / 6.3614E+00) H = 40.0...100.0 KM ---> X = 0.00000E+00 + 5.4018E+02 * EXP(-H / 7.7217E+00) H = 100.0...112.8 KM ---> X = 1.12829E-02 - H / 1.0000E+04 T = transmission atmosphere = $exp(-X/\Lambda)$

 Λ = Mean free path Rayleigh scattering $\Lambda(350 \text{ nm})=1700 \text{ g/cm}^2$

 $\begin{array}{l} X_{\text{Euso-TA, slant}} = (X_{\text{ground}} - X_{\text{Euso-TA}}) / \sin \alpha_{\text{Euso-TA}} \\ X_{\text{max, slant}} = (X_{\text{ground}} - X_{\text{max}}) / \sin \alpha_{\text{max}} \end{array}$

 $T_{max} = \exp(-X_{max, slant}/\Lambda(350nm))$ $T_{Euso-TA} = \exp(-X_{Euso-TA, slant}/\Lambda(350nm))$

E_{equivalent} – Distance along telescope axis

Counts - E_{equivalent}

20

Counts - Distance along telescope axis

