

instituto de astronomía

unam

SEARCH FOR VERY-HIGH-ENERGY PHOTONS FROM GAMMA-RAY BURSTS WITH HAWC

<u>Nissim Fraija</u>

and Magda Gonzalez for the HAWC Collaboration

ICRC 2019 Madison (W), 2019 July 30

MOTIVATION

- Recent IACT detections of GRB afterglow by MAGIC and HESS
- The LAT-detected bursts exhibit two crucial similarities:

i) The first high-energy photon (>100 MeV) was delayed with the onset of the prompt phase ii) The high-energy emission was temporarily extended, with a duration much longer than the prompt emission

SSC forward-shock emission

- Synchrotron photons are Compton scattered by the same jet electrons.
 It is unavoidable
- The maximum flux lies in the HAWC energy range with typical parameters of GRB afterglows.
- Detection of GRBs at hundreds of GeVs:
 - dense circumburst medium
 - low-redshift
 - high equivalent kinetic energy
 - Not in KN regime

Possible Candidates

 29 GRBs with photons > 10 GeV 	
(LAT second catalog)	
For example:	
GRB 130427A (z=0.3, 95 GeV at 244 s)	Ackermann et al 2019
GRB 160509A (z=1.17, 52 GeV at 77 s)	Ackennann et af 2019

Recent IACT detections of GRB afterglow by MAGIC and HESS

 GRB 190114C (z=0.42, >300 GeV, up to 20 minutes)
 Mirzoyan et al 2019

 GRB 180720B (z=0.654, 420 GeV, ~ a few hours)
 CTA symposium 2019

• We are still waiting for a powerful GRB in HAWC field of view

High Altitude Water Cherenkov (HAWC) Extensive Air Shower Detector

• 22,000 m² air shower array

Completed March 2015

- 300 Water Cherenkov detectors (WCD)
- 200,000 liters of purified water per WCD

Citlaltepetl Pico de Orizaba 5160m a.s.l.

- 4 sensors (photo-multiplier tubes) per WCD
- air shower particle 200,000 L of purified water photomultiplier tube (PMT)

Large Millimeter Telescope

HAWC 4100 m a.s.l. **Tliltepetl** Sierra Negra 4582m a.s.l.

> 10 GeV gamma-ray observatories

Search for TeV Counterparts to Gamma Ray Bursts (still waiting for a big one)

Fermi (GBM and LAT) has observed GRBs that HAWC could detect

HAWC effective area $\sim 100 \text{ m}^2$ at 100 GeV

Fermi with ~ 1 m² has detected ~ 100 GeV gamma-rays from GRBs

GRB 090510 (multiwavelength observations)

GRB 130427A

.

.

٠

•

Frequency [Hz]

- Brightest burst ever detected by Swift
- Very close (z=0.34) ٠
 - Most powerful GRB detected z< 0.5
 - Longest lasting high energy emission ever detected (~20 h)
 - Most energetic photon ever detected (95.3 GeV)

Evidence for inverse Compton emission?

GRB 170206A

The 3rd short brightest burst detected by GBM $(T_{90}=1.2 \text{ s})$

80-800 GeV]

z = 0.3

 10°

n < 0.05 cm⁻³

Γ > 800

GRB 170817A

associated with NS-NS merger

 E_{iso} = 5 x 10⁴⁶ erg z=0.009 d_z~ 40 Mpc T₉₀= 2s

Timeline of the discovery

Abbott et al 2017

Recent IACT detections of GRB afterglow by MAGIC and HESS

Summary

- The VHE upper limits derived with HAWC together with the multiwavelength observations reported by the orbiting instruments and ground telescopes can constrain the physics of GRBs
- We present the upper limits in the GeV TeV energy range of the recent IACT detections of GRB afterglow by MAGIC and HESS.
- We present the VHE upper limits of the electromagnetic counterpart of GW170817.
- HAWC continues to monitor the whole sky in search of signals from potential burst candidates.