Search for Cosmic-Ray Antideuterons with BESS-Polar II

Kenichi Sakai
NASA/GSFC/CRESST/UMBC

For BESS collaboration
BESS is US-Japan collaborative program.

J. W. Mitchell (PI, US, NASA/GSFC)

A. Yamamoto (PI, Japan, KEK)

National Aeronautical and Space Administration / Goddard Space Flight Center (NASA/GSFC)

High Energy Accelerator Research Organization (KEK)

The University of Tokyo

Kobe University

University of Maryland

Institute of Space and Astronautical Science/JAXA

University of Denver (Since June 2005)
BESS-Polar I & II flights were carried out over Antarctica.

<table>
<thead>
<tr>
<th></th>
<th>BESS-Polar I</th>
<th>BESS-Polar II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch date</td>
<td>Dec. 13(^{th}), 2004</td>
<td>Dec. 23(^{rd}), 2007</td>
</tr>
<tr>
<td>Observation time</td>
<td>8.5 days</td>
<td>24.5 days</td>
</tr>
<tr>
<td>Cosmic-ray observed</td>
<td>9×10^8 events</td>
<td>4.7×10^9 events</td>
</tr>
<tr>
<td>Flight altitude</td>
<td>3739km (54g/cm(^2))</td>
<td>36km (65g/cm(^2))</td>
</tr>
</tbody>
</table>
Event display with reconstructed proton track is shown.

Rigidity (MDR: 200 GV)

Solenoid: Uniform field ($\phi=0.9\,\text{m}, B=0.8\,\text{T}$)

Thin material (2.4 g/cm2/wall)

Drift chamber: Redundant hits

($\sigma \sim 150\,\mu\text{m}, 32\sim48+4\text{hits}$)

Charge, Velocity

TOF, Chamber: dE/dx measurement

($Z = 1, 2, \ldots$)

TOF: $1/\beta$ measurement ($\sigma \sim 1, 2\%$)

$$m = ZeR \sqrt{1/\beta^2 - 1}$$
Why does antideuteron search probe possible exotic sources?

<table>
<thead>
<tr>
<th>Antiproton</th>
<th>Antideuteron</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESS-Polar II</td>
<td>BESS 97-00</td>
</tr>
</tbody>
</table>

Flux (m²·sr⁻¹·s⁻¹·GeV⁻¹) vs. Kinetic energy (GeV)

- BESS-Polar II
- BESS95+97
- PAMELA
- AMS-02

Antiproton flux (m³·s⁻¹·sr⁻¹·GeV⁻¹):
- Mitsui et al.
- Bieber et al. (interpolated)
- Bergström et al.
- Donato et al.
- GALPROP
- Bieber et al.

Leaky Box Force field φ=600 MV
Leaky Box Force field φ=500-1000 MV
Leaky Box Drift model TA=15°(A<0)
Simplified 2-zone diffusion
Leaky Box Drift model TA=10°(A>0)

Flux (m²·sr⁻¹·s⁻¹·GeV⁻¹) vs. Kinetic Energy (GeV/n):

- BESS95+97 p
- secondary p
- neutralino p
- PBH p
- PBH d (included in this paper)
- secondary d

This work

Antiproton Flux (BESS-Polar II) vs. Antideuteron Flux (BESS 97-00)

1.9 x 10⁻⁴ (95% C.L.)

Upper limit (97 - 00)
Antideuteron Analysis

5 Particle identification

\[\frac{dE}{dx} \]

\[\frac{1}{\beta} \]
Antideuteron search

The $1/\beta_{UL}$ VS rigidity plot

- Signal region for antideuteron

Excluding 3.5σ region from antiproton center to prevent antiproton contamination.
Antideuteron search

The 1/β_{UL} VS rigidity plot

- Signal region for antideuteron
- No antideuteron candidate in BESS-Polar II data

Excluding 3.5σ region from antiproton center to prevent antiproton contamination
Upper limit calculation

\[\Phi \bar{d} \ dE = \frac{N_{obs}}{S \Omega \cdot T_{live} \cdot \varepsilon_{single} \cdot \varepsilon_{Q-ID} \cdot \eta (1 - \delta_{sys})} \]

- \(N_{obs} \): Number of Observed candidate = 3.1
- \(S \Omega \): Geometrical acceptance
- \(T_{live} \): Live time
- \(\varepsilon_{single} \): Single track efficiency
- \(\varepsilon_{Q-ID} \): Detector selection efficiencies
- \(\eta \): Survival fraction through atmosphere
- \(\delta_{sys} \): Systematic error

- Since no antideuteron was found, 3.1 was taken as the number of the observed antideuteron events for the calculation of 95% C.L. upper limit.
- In order to obtain the most conservative limit, the minimum value of the effective exposure factors \((S \Omega \cdot T_{live} \cdot \varepsilon_{single} \cdot \varepsilon_{Q-ID} \cdot \eta) \) was used.
Detector efficiencies

\[\Phi_{\bar{d}} \, dE = \frac{N_{\text{obs}}}{S \Omega \cdot T_{\text{live}}} \, \varepsilon_{\text{single}} \cdot \varepsilon_{\text{Q-ID}} \cdot \eta \cdot (1 - \delta_{\text{sys}}) \]
Antideuteron Analysis

10 Geometrical acceptance $\times \varepsilon_{\text{single}}$

\[
\Phi dE = \frac{N_{\text{obs}}}{S\Omega \cdot T_{\text{live}} \cdot \varepsilon_{\text{single}} \cdot \varepsilon_{Q-1D} \cdot \eta \cdot (1 - \delta_{\text{sys}})}
\]
Upper limit on antideuteron flux measured by BESS-Polar II together with earlier published BESS97-00 antideuteron upper limit

\[J(d) < 5.5 \times 10^{-5} \quad \text{m}^2 \text{sr sec GeV/n}^{-1} \quad (95\% \text{C.L.}) \]

- Compared with the data taken in the solar minimum (BESS97), order of magnitude improvement has been achieved.
Antideuteron search

• No antideuteron candidate in BESS-Polar II.

• New upper limit \(J(d) < 5.5 \times 10^{-5} \text{ (m}^2\text{sr sec GeV/n)}^{-1} \) (95% C.L.)
 o 3.1 was taken as the number of the observed antideuteron events for the calculation of 95% C.L. upper limit.
 o In order to obtain the most conservative limit, the effective exposure factors was reduced by using with the systematic error (dsys = \(\sim\)4%).

• Compared with the data taken in the solar minimum (BESS97), order of magnitude improvement has been achieved.