Electron Acceleration at Rippled Low Mach Number Shocks in Merging Galaxy Clusters

Jacek Niemiec

Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

Collaborators:
Oleh Kobzar - INP PAS, Kraków, Poland
Takanobu Amano, Masahiro Hoshino - University of Tokyo, Japan
Yosuke Matsumoto - Chiba University, Japan
Shuichi Matsukiyo - Kyushu University, Japan
Martin Pohl - Desy-Zeuthen/University of Potsdam, Germany

36th ICRC, Madison, WI, USA, July 24-Aug 1, 2019
Introduction

• observations of X-ray and radio emission in galaxy clusters show electron acceleration to non-thermal energies
• electron acceleration in radio relics is attributed to shock waves resulting from cosmic structure formation
• most energetic merger shocks have low Mach numbers ($M_s < 4$, $M_A < 10$) and propagate in high beta ($\beta >> 1$) plasmas.
• Diffusive Shock Acceleration (DSA) assumed to operate shocks - mechanism of electron injection is poorly known for galaxy cluster conditions

Alfvenic Mach number: $M_A = \frac{v_{sh}}{v_A}$

Sonic Mach number: $M_s = \frac{v_{sh}}{c_s}$

Plasma beta: $\beta = \frac{p_{th}}{p_{mag}}$

Sonic speed:

$$v_A = \frac{B_0}{\sqrt{\mu_0(N_em_e + N_im_i)}}$$

Alfven speed:

$$c_s = \sqrt{\frac{2\Gamma k_BT_i}{m_i}}$$
Particle injection to DSA

\[d_{sh} \sim (1-100) \lambda_{gi} \]

\[r_g(\varepsilon_{inj}) > d_{sh} \]
Previous work: multiple Shock Drift Acceleration cycles at quasi-perpendicular shocks

- SDA-reflected electrons scattered back towards shock by upstream self-generated waves - DSA-like process
- formation of upstream power-law spectra
- more effective at high β
- $\gamma_{\text{max}} \ll \gamma_{\text{inj}}$?

Matsukiyo et al. 2011 (1D)
Guo et al. 2014 (2D)
Kang et al. 2019 (2D)
Effects of the shock rippling

- no reflected electrons because of ion-scale shock ripples
- SDA does not work
- acceleration by scattering on the waves in the shock transition instead
- if the same shock rippling mechanism operates for conditions assumed in Guo et al. 2014 and Kang et al. 2019, then their simulations might have not been able to resolve it

relatively low $\beta=3$, Matsukiyo & Matsumoto 2015
Our current work: investigate multi-scale electron acceleration physics with large-scale 2D Particle-In-Cell simulations

Kobzar et al., in preparation (2019)

2D3V (Lx x Ly = 333 λsi x 32 λsi), $M_A=6.1$, $M_s=3$, $m_i/m_e=100$, $v_0=0.1c$, $\beta=5$ (plasma temperature $k_B T \approx 40$ keV)

subluminal shock: $\vartheta=75^\circ$ ($\vartheta_{cr} \approx 81^\circ$)

$v_t \simeq 1.5 v_{th,e} > v_{th,e}$ ($v_t = \frac{v_{sh}}{\cos \vartheta}$)
Global shock structure: multi-scale turbulence

- rippling in the shock transition on different scales (overshoot-undershoot-2nd overshoot)
 - AIC and mirror modes
- short-scale whistler waves in the overshoot
- oblique and perpendicular modes of the electron firehose instability in the upstream, enhanced and modulated by the ripples
Electron spectra – time evolution

- substantial increase in non-thermal tail production efficiency coincident with the onset of the shock rippling at $\Omega_{ci}t \approx 20$
- power-law spectra downstream in agreement with observations
Electron spectra – injection efficiency

Electron spectra for upstream and downstream regions are illustrated with plots showing the distribution of electrons as a function of energy ($\gamma-1$). The parameters Ωt are given for the different curves, indicating the injection efficiency for various values.

\[\zeta = \frac{4\pi}{N_2} \int_{p_{\text{sp}}^\text{max}}^{p_{\text{max}}} \langle f(p) \rangle p^2 dp \quad - \text{fraction of supra-thermal electrons} \]

\[\varepsilon_{\text{CR}} \quad - \text{corresponding energy density fraction} \]

- $\zeta_{\text{max, up}} \approx 5\%$, $\varepsilon_{\text{CR max, up}} \approx 40\%$
- $\gamma_{\text{max, up}} \approx 40 - 60 \quad \leftarrow \gamma_{\text{inj}} \approx 25 \quad (p_{\text{inj}} \sim 3 p_{\text{th,i}})$
Acceleration processes - typical particle trajectories

- most particles gain their energies in a single interaction with the shock
- acceleration time much longer than predicted by SDA ($\sim 1/\Omega_i$)
- acceleration takes place also deep in the shock transition
- most accelerations associated with an increase in p_\perp
- strong pitch-angle scattering (arcs in $p_{||}$-p_\perp momentum space)
- energy gain mostly through the drift along motional electric field:

$$\Delta \gamma_{\text{drift}} = (-e/m_e c^2) \int E_z \, dz$$

⇒ Stochastic Shock-Drift Acceleration (SSDA)
Stochastic Shock Drift Acceleration (SSDA)

Katou & Amano (2019)

- electrons are confined in the shock transition region by stochastic pitch-angle scattering off magnetic turbulence and gain energy through SDA (non-adiabatic acceleration)
- longer particle confinement increases energy gains and enables more efficient acceleration

- adiabatic mirror reflection in the HTF
- elastic scattering (diffusion) in the plasma rest frame
- downstream particles accelerated in the shock through SSDA
- advection of upstream-reflected particles plays minor role
Summary and conclusions

• kinetic modeling of particle acceleration at low Mach number shocks in high-beta plasmas requires multi-dimensional and large-scale effects to be taken into account

• for parameters analysed in this work we find the presence of multi-scale turbulence, including ion-scale shock rippling modes, to be critical for efficient electron acceleration

• electron injection proceeds mainly through the stochastic SDA process, effects of multi-SDA cycles are also observed

• acceleration to very high energies occurs that should lead to electron injection to DSA in the presence of long-wave (MHD) upstream turbulence

• preliminary results have been presented