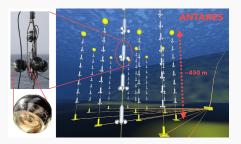
Université de Paris Laboratoire Astroparticules et Cosmologie, Paris

Point source stacking with 11 years of ANTARES data $% \left({{{\rm{ANTARES}}} \right)$

Julien Aublin for the ANTARES collaboration.

ICRC 2019, Madison. July 26, 2019

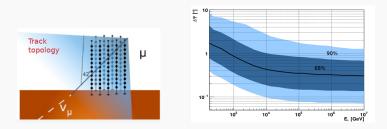
ANTARES talks @ ICRC 2019


 High energy diffuse flux: Luigi Fusco, Friday, 18:00

- Combined ANTARES-IceCube point sources searches Giulia Illuminati, Saturday, 13:45
- Correlations of HE ν and Ultra-high Energy Cosmic Rays Anastasia Maria Barbano (IceCube), Saturday, 17:00
- Neutrinos in coincidence with HAWC γ-ray flares Mukharbek Organokov, Saturday, 18:15
- \blacktriangleright Multi-wavelength follow-up observations of ANTARES ν alerts Damien Dornic, Tuesday, 17:30
- Neutrino counterparts of GW events with ANTARES Marta Colomer, Tuesday, 18:15

The ANTARES detector

The ANTARES detector:


- ▶ Water Cherenkov detector operating since 2007
- ▶ Located 40 km offshore Toulon, France
- $\blacktriangleright~2475~{\rm m}$ depth in the Mediterranean sea
- ▶ Array of 885 PMT
- 12 detection lines, each with 25 storeys
- 3 PMT (10") per storey, facing 45° downwards

Data set

The ANTARES 11 yr Point Source Sample:

- ▶ Period: Jan 29, 2007 to Dec 31, 2017
- ▶ Total livetime: 3125 days
- $\blacktriangleright~8754$ events reconstructed and selected as tracks
- ► Visible sky: $\delta \in [-90^\circ; +53^\circ]$
- ▶ Median angular resolution: better than 0.4° above 10 TeV

Point source search: stacking analysis

Extended maximum likelihood method:

- ▶ H0: pure atmospheric neutrino background
- ► H1: signal+background

$$\mathrm{TS} = \mathsf{ln}\left(\frac{\mathsf{max}(\mathcal{L}(\mathrm{H}_1|\mathrm{x}))}{\mathsf{max}(\mathcal{L}(\mathrm{H}_0|\mathrm{x}))}\right)$$

with

$$\begin{split} & \mathsf{ln}\,\mathcal{L}(\mathrm{H}_1|\mathrm{x}) = \sum_{i}^{\mathrm{N}}\mathsf{ln}\,[\mu_{s}\mathrm{S}(\mathrm{x}_{i}) + \mu_{b}\,\mathrm{B}(\mathrm{x}_{i})] - \mu_{s} - \mu_{b} \\ & \\ & \mathsf{ln}\,\mathcal{L}(\mathrm{H}_0|\mathrm{x}) = \sum_{i}^{\mathrm{N}}\mathsf{ln}\,[\mu_{b}\mathrm{B}(\mathrm{x}_{i})] - \mu_{b} \end{split}$$

Two different implementations:

▶ 1) Global fitting (one TS), signal term written as:

$$S(x) = \frac{1}{\sum w} \sum_{j=1}^{N^{\text{sources}}} w_j \, s_j(x)$$

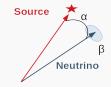
▶ 2) Perform individual fit for each source, sum the TS:

$$\mathrm{TS} = \frac{1}{\sum w} \sum_{j=1}^{N^{\mathrm{sources}}} w_j \mathrm{TS}_j$$

Signal PDF

Point Spread Function:

$$S(x_i) = PSF(\alpha, E, \beta)$$


 α : angle between ν direction and source position

E: neutrino estimated energy

 $\beta:$ angular uncertainty

Background PDF

$$B(x) = A(\sin \delta) \times f_b(E, \beta)$$

Weights of each source written as:

 $w_j = w_{model} \times \mathcal{A}(\delta_j) \qquad {\rm with} \quad \mathcal{A} \to {\rm acceptance}$

Two different assumptions for w_{model} :

► Flux weight:

$$w_{model} \propto \Phi_{\gamma, X, IR, ...}$$

► Equal weight:

 $w_{\rm model} = 1$

Target sources

Astrophysical catalogs

▶ Fermi 3LAC Blazars (1255 sources in FoV)

[Ackermann et al. ApJ 2015]

Star Forming Galaxy catalog observed in γ by Fermi (54 in FoV)
 [Ackermann et al. ApJ 2012]

• Giant radiogalaxies catalog selected in soft γ ray (53 in FoV) [Bassani et al. MNRAS 2016]

▶ Dust obscured AGN selected in X rays (10 in FoV)

[Maggi et al. PhysRevD 2016]

HE Neutrino sample

► IceCube high energy tracks (55 sources in FoV)

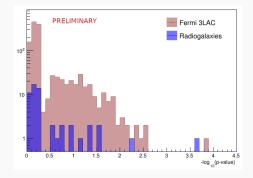
(35 tracks from 8 yr up-going muons + 21 HESE 6 yr)

[IceCube collaboration, ICRC 2017]

Results

Results of the stacking analysis:

- ▶ No significant findings after trial factor correction
- Radiogalaxy catalog: $p = 2.8\sigma$ pre-trial
- Reduces to $P = 1.6\sigma$ post-trial


	Equal weighting				Flux weighting			
Catalog	TS	р	Р	$\Phi_{90\%}^{ m UL}$	TS	р	Р	$\Phi_{90\%}^{\mathrm{UL}}$
Fermi 3LAC All Blazars	6.15	0.19	0.83	4.1	0.21	0.85	1.	2.0
Fermi 3LAC FSRQ	0.83	0.57	0.97	2.1	~ 0	~ 1	1.	1.7
Fermi 3LAC BL Lacs	8.3	0.088	0.64	4.6	0.84	0.56	0.96	1.9
Radio-galaxies	3.4	$4.8 \ 10^{-3}$	0.10	3.3	5.1	$6.9 \ 10^{-3}$	0.13	3.7
Star Forming Galaxies	0.030	0.37	0.93	1.9	~ 0	~ 1	1.	1.6
Obscured AGN	1.010^{-3}	0.73	0.98	1.4	~ 0	~ 1	1.	1.3
IC HE Tracks	0.77	0.05	0.49	0.96	-	-	-	-

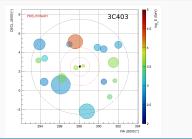
90% U.L given in equivalent E^{-2} diffuse flux, $(10^{-9} \text{ GeV}^{-1} \cdot \text{cm}^{-2} \cdot \text{s}^{-1} \cdot \text{sr}^{-1})$.

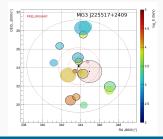
Search for dominant sources

Individual point source search

- ▶ Compute p-values for each source of the
 - ▶ Fermi 3LAC catalog
 - Radiogalaxy catalog
- Search for outliers

Sources with the lowest p-value

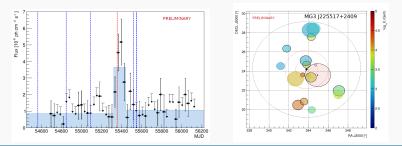

Radiogalaxy 3C403


- \blacktriangleright Seyfert II type, d=260 Mpc, RA=298.06°, $\delta=+2.5067^\circ$
- p-value $p = 2.3 \times 10^{-4} (3.7\sigma)$

Blazar MG3 J225517+2409

▶ LSP BLLac type, d=?, RA=343.81°, $\delta = +24.17^{\circ}$

• p-value
$$p = 1.4 \times 10^{-4} (3.8\sigma)$$



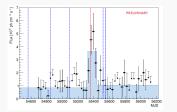
Dedicated time analysis for MG3 J225517+2409

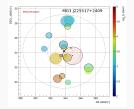
Time dependent likelihood analysis

- $\blacktriangleright\,$ Fermi 3FGL $\gamma\text{-ray}$ light curve presents a ~ 4 months flare
- ▶ Icecube up-going track # 3 occurs during the flare (July 2010)
- ► Time-dependent likelihood: $\ln \mathcal{L}(H_1|x) = \sum_i^N \ln \left[\mu_s S(x_i) f_S(t_i) + \mu_b B(x_i) f_B(t_i)\right] - \mu_s - \mu_b$
- ► Combine results of ANTARES & IC: $p_{Combined} = p_{ANTARES} \times p_{IC}$

Dedicated time analysis for MG3 J225517+2409

Time dependent likelihood analysis


- ▶ Time-dependent PDF $f_{S}(t)$:
 - ▶ 1) use the 3FGL light curve (bayesian block)
 - ▶ 2) PDF = 0 except during the flare


▶ Results for hypothesis 1):

▶ $p_{\text{ANTARES}} = 1.4 \times 10^{-4}$, $p_{\text{IC}} = 1.6 \times 10^{-3}$, $p_{\text{Combined}} \sim 2 \times 10^{-7}$

► Results for hypothesis 2):

▶ $p_{\text{ANTARES}} \sim 1$, $p_{\text{IC}} = 5. \times 10^{-4}$, $p_{\text{Combined}} \sim 5. \times 10^{-4}$

Summary & Conclusion

- Stacking likelihood analysis using ANTARES 11 yr Point Source sample has been presented
- ▶ Search for global excess from sources in catalogs
- ▶ After trial factors correction, no significant results are found
- ▶ Interesting potential neutrino sources:
 - Radiogalaxy 3C403
 - ▶ Fermi Blazar MG3 J225517+2409
- ▶ Dedicated time analysis for Blazar MG3 J225517+2409
 - Continuous neutrino emission hypothesis: $p_{Combined} \sim 2 \times 10^{-7}$
 - ▶ Transient neutrino emission hypothesis: $p_{Combined} \sim 5 \times 10^{-4}$