Ground and flight performance of the balloon-borne magnetic spectrometer AESOP-Lite

ICRC2019
Madison, WI, USA

Pierre-Simon Mangeard Bartol Research Institute University of Delaware, Newark, DE, USA mangeard@udel.edu

PoS(ICRC2019)1116

Team AESOP-Lite

<u>Bartol Research Institute</u> <u>University of Delaware, Newark, DE, USA</u>

John Clem - Principal Investigator

Paul Evenson - Collaborator

Brian Lucas - Engineering Graduate Student

James Roth - Senior Technician

Pierre-Simon Mangeard - Postdoctoral Researcher

<u>Santa Cruz Institute for Particle Physics</u> <u>University of California, Santa Cruz, CA, USA</u>

Robert Johnson - Collaborator Sarah Mechbal - Graduate Student

UC SANTA CRUZ

Outline

I- Science Goals

II- The AESOP-Lite Instrument

III- Performances

IV- Conclusion

Science Goals (1)

ICRC2019 Madison, WI, USA

AESOP-Lite: Anti-Electron Sub-Orbital Payload - Low Energy

- Serve as 1AU baseline for Voyager electron measurements
 - \circ Voyager 1 (08/2012) and 2 (11/2018) are now in the interstellar space
 - AESOP-Lite provides measurements in the overlapping electron energies (below 100 MeV)
- Search for the origin of the turn-up in the low energy electron spectrum
 - Resolving the electrons and positrons is vital to understand both electron origin and propagation in the interplanetary space
 - AESOP-Lite is capable of charge sign separation at these energies

Science Goals (2)

ICRC2019
Madison, WI, USA

 Measure the time variations of electrons and positrons magnetically trapped in the geomagnetic field

The AESOP-Lite instrument (1)

Main components, some of which are inherited from the LEE telescope:

- 4 scintillators (T1, T3 and T4 + Guard) each connected to a photomultiplier tube (PMT)
- Gas Cherenkov detector for hadron and backwards particle discrimination (C₃F₈)
- Magnetic spectrometer: dual ring dipole magnet $(B_{av}=0.3T) + 7$ planes of Silicon Strip Detectors (SSD)
- 4 SSD planes in the bending view, 3 in the non-bending view, 20 cm lever arm

The AESOP-Lite instrument (2)

• Detectors were specially designed for the Fermi/LAT satellite instrument, the "excess ladders" were then used for several particle physics experiments

Thickness	400 μm
Length	18 cm
Strip number	768
Strip pitch	228 μm
$\sigma_{ m detector}$	66 µm
System Clock	10 MHz

The AESOP-Lite instrument (4)

The payload on the lab stand during the integration phase in Palestine, Texas (Winter 2018)

Performances (1)

- Monte Carlo simulation (Fluka)
- Trigger requirement:
 - T1&T2&T3
 - The 3 tracker layers hit in the non-bending plane OR the 3 upper tracker layers hit in the bending plane
- Selection:
 - o 5 to 12 hits in the tracker
- Preliminary track reconstruction:
 - Straight line in the non-bending plane
 - 2nd order polynomial function in the non-bending plane
 - Hits are selected to minimize the χ^2

Performances (2)

- Monte Carlo simulation (Fluka)
- Trigger requirement:
 - o T1&T2&T3
 - The 3 tracker layers hit in the non-bending plane OR the 3 upper tracker layers hit in the bending plane
- Selection:
 - o 5 to 12 hits in the tracker
- Preliminary track reconstruction:
 - Straight line in the non-bending plane
 - 2nd order polynomial function in the non-bending plane
 - Hits are selected to minimize the χ^2
- Incident angle dependence of the geometric factor

Performances (3)

- Monte Carlo simulation (Fluka)
- Trigger requirement:
 - T1&T2&T3
 - The 3 tracker layers hit in the non-bending plane OR the 3 upper tracker layers hit in the bending plane
- Selection:
 - o 5 to 12 hits in the tracker
- Preliminary track reconstruction:
 - Straight line in the non-bending plane
 - 2nd order polynomial function in the non-bending plane
 - Hits are selected to minimize the χ^2
- Resolution of $\sim 11.5\%$ to 13.5% on the inverse momentum

Performances (4)

- Monte Carlo simulation (Fluka)
- Trigger requirement:
 - T1&T2&T3
 - The 3 tracker layers hit in the non-bending plane OR the 3 upper tracker layers hit in the bending plane
- Selection:
 - o 5 to 12 hits in the tracker
- Preliminary track reconstruction:
 - Straight line in the non-bending plane
 - 2nd order polynomial function in the non-bending plane
 - Hits are selected to minimize the χ^2
- Resolution of $\sim 11.5\%$ to 13.5% on the inverse momentum
- Loss of energy in the detector above the spectrometer is taken into account (~4 MeV)

Performances (5)

- Ground runs at Esrange, Sweden, April-May 2018
- Trigger selection:
 - o Online: T1 & T4
 - o Offline: T1 & T3 & T4 & NoGuard
 - Offline: Anti-coincidence with T2
- No Cherenkov signal in T2:
 - Select muons below ~1.6 GeV
 - \circ Electron and positron won't pass the spectrometer (<8 MeV)
- Good test to check the charge separation of the spectrometer
- Peak-to-Peak ratio: $\mu + /\mu = 1.33(7)$

Conclusion

- AESOP-Lite is a new instrument designed to measure positrons and electrons between 20 and 300 MeV
- Preliminary energy resolution: ~13%. We still need to improve the track reconstruction
- Charge separation ability was checked at much higher energy with atmospheric muons measured at ground level
- AESOP-Lite had a successful inaugural flight in May 2018 with a live time of 99%
- We working on an upgrade of the data acquisition system
- Preliminary results: Sarah Mechbal PoS(ICRC2019)1119

THANK YOU

The AESOP-Lite instrument (3)

- Use 8 ring dipole permanent magnets
- Average field of 0.3T at the center of the magnet
- One plane of SSD is inserted in the center

