On Measuring the CR Production Rate in SNR Shocks

 by Polarized Balmer Line Emission

 by Polarized Balmer Line Emission}
cf.: Shimoda et al. 2018, MNRAS, 473
Shimoda \& Laming 2019, MNRAS, 485
Shimoda et al., ICRC 2019, PoS 424
Jiro Shimoda ${ }^{1}$
Yutaka Ohira ${ }^{2}$ 1. Tohoku Univ.
2. Aoyama Gakuin Univ.

Ryo Yamazaki ${ }^{2}$
3. NRL

J Martin Laming 3 4. Saitama Univ.
J. Martin Laming ${ }^{3}$ ICRC 2019, Wisconsin,

Satoru Katsuda ${ }^{4}$ July 30

Summary of this work

\square We have calculated the polarized Balmer line emissions from the collisionless shocks efficiently accelerating CRs.
\square The energy loss rate of the shocks due to the CR acceleration can be measured by the polarization degree.

DOur results suggest a sizable loss rate for SN 1006.

Balmer Line Emissions from Collisionless Shocks

Winkler+14
Supernova Remnants (SNRs)

Figures from Morlino+15
Pulsar Wind Nebulae

Balmer line emissions (especially $\mathrm{H} \alpha$) are ubiquitously seen in collisionless shocks propagating into the ISM.

Discovery of polarized $\mathrm{H} \alpha$ emission

@ bright filament of SN 1006 (Sparks+ 15)

$>$ Linear Polarization

$>$ Polarization angle: perpendicular to the shock
$>$ Degree: 2.0 ± 0.4 \%

Polarized $\mathrm{H} \alpha$ in Experiment

In the experiments, the proton/electron beam excites the H atoms, resulting in linearly polarized $\mathrm{H} \alpha$ along the incident beam direction.

Polarized $\mathrm{H} \alpha$ in F $_{50}$ xperiment

In the experiments, the proton/electron beam excites the H atoms, resulting in linearly polarized $\mathrm{H} \alpha$ along the incident beam direction.

Polarized $\mathrm{H} \alpha$ in $_{25}$ Experiment
 H atom gas
 Incident p / e beam
 Werner \& Schartner 96
 Case of proton
 Specific energy [keV/amu]

In the experiments, the proton/electron beam excites the H atoms, resulting in linearly polarized $\mathrm{H} \alpha$ along the incident beam direction.

Polarized H α in SNR shocks

Shock heated p/e

$$
\sim V_{\text {sh }}
$$

Incident p/e beam

- In the SNR shocks, since the shock heated proton/electron also excites the H atoms, the net linear polarization of $\mathrm{H} \alpha$ is depolarized.

Polarized H α in SNR shocks

Shock front $:-\sqrt{\frac{k T_{\text {down }}}{m_{\mathrm{p}}}}$

\square For SNR shocks, the polarized $\mathrm{H} \alpha$ with a

 few \% degree was firstly predicted by Laming (1990), but he did not consider the effects of CR acceleration.- Incident p/e beam
- In the SNR shocks, since the shock heated proton/electron also excites the H atoms, the net linear polarization of $\mathrm{H} \alpha$ is depolarized.

Cosmic Rays

The energy spectrum of CRs

On the energy loss of the shocks
No cosmic-rays

Downstream
temperature
Upstream kinetic energy

$$
k T_{\text {down }}=k T_{\mathrm{RH}} \equiv \frac{3}{16} \mu m_{\mathrm{p}} V_{\mathrm{sh}}{ }^{2}
$$

Downstream

kinetic energy

If the shock accelerates cosmic-ray, ...

On the energy loss of the shocks

Efficient Acceleration

Downstream
 temperature

Upstream kinetic energy

$$
k T_{\text {down }}<k T_{\mathrm{RH}} \equiv \frac{3}{16} \mu m_{\mathrm{p}} V_{\mathrm{sh}}^{2}
$$

Cosmic-ray Acceleration

Downstream

 kinetic energyEnergy loss rate

$$
\eta \equiv \frac{T_{\mathrm{RH}}-T_{\mathrm{down}}}{T_{\mathrm{RH}}}
$$

On the energy loss of the shocks

Efficient Acceleration

Energy loss rate (Shimoda+ 15):

$$
\frac{T_{\mathrm{RH}}-T_{\mathrm{down}}}{T_{\mathrm{RH}}}
$$

Previous estimates of the loss rate

Problem in the previous estimates

\square Measurement of the shock velocity

\checkmark In order to derive the shock velocity from the proper motion, we need a distance to the SNR with high accuracy (with errors less than 1%).

Polarized Ho in SNR shocks (no CRs)

- In the SNR shocks, since the shock heated proton/electron also excites the H atoms, the net linear polarization of $\mathrm{H} \alpha$ is depolarized.

Polarized Ho in SNR shocks (with CRs)

Shock heated p / e $\sim V_{\text {sh }}$ Incident p/e beam

- When the shock efficiently accelerates CRs, the downstream temperature becomes lower, resulting in a higher polarization of $\mathrm{H} \alpha$.

Polarized Ho in SNR shocks (with CRs)

Shock front

\square In the previous study, Laming (1990) considered only H α emission from shocks without CRs.
\square In this work, updating the atomic data (e.g. cross sections), we calculate polarized H emissions from shocks efficiently accelerating CRs based on the latest radiation line transfer model constructed by Shimoda \& Laming (2019).

Calculation diagram

\square Downstream temperatures

$$
\begin{aligned}
k T_{\mathrm{p}} & =\frac{3}{16}(1-\eta) \mu m_{\mathrm{p}} V_{\mathrm{sh}}^{2} \\
k T_{\mathrm{e}} & =\beta k T_{\mathrm{p}}
\end{aligned}
$$

The downstream proton and electron temperatures are observable.

We derive the downstream velocity from the jump conditions for the shock loosing an energy (like a radiative shock, Cohen+98).
\square Downstream velocity in the upstream frame

$$
u_{2}=\left(1-\frac{1}{R_{c}}\right) \sqrt{\frac{16}{3} \frac{k T_{\mathrm{p}}}{(1-\eta) \mu m_{\mathrm{p}}}}
$$

$$
\begin{aligned}
Q & \equiv I_{\|}-I_{\perp} \\
I & \equiv I_{\|}+I_{\perp}
\end{aligned} \quad \Pi \equiv \frac{I_{\|}-I_{\perp}}{I_{\|}+I_{\perp}}
$$

※ Parallel and Perpendicular are defined respecting to the shock velocity.

Polarization degree of $\mathrm{H} \alpha$

Downstream Proton Temperature [keV]

Polarization degree of $\mathrm{H} \alpha$

Downstream Proton Temperature [keV]

SN 1006

SN 1006

$$
\begin{aligned}
L_{\pi^{0}} & \sim 0.1 \frac{\eta \rho V_{\mathrm{sh}}^{2}}{2} R^{3} n \sigma c \\
& \sim 10^{33} \eta \mathrm{erg} / \mathrm{s} \times\left(\frac{R}{3 \mathrm{pc}}\right)^{3}\left(\frac{V_{\mathrm{sh}}}{0.01 c}\right)^{2}\left(\frac{n}{0.3 \mathrm{~cm}^{-3}}\right)^{2}
\end{aligned}
$$

Summary of this work

\square We have calculated the polarized Balmer line emissions from the collisionless shocks efficiently accelerating CRs.

The energy loss rate of the shocks due to the CR acceleration can be measured by the polarization degree.
-Our results suggest a sizable loss rate for SN 1006.
\rightarrow Hadronic dominated γ-rays will be detected ?

Once we determine the η and distance

Downstream temperature

C Cosmic-ray protons : η_{p} $p_{\mathrm{CR}}+p_{\text {thermal }} \rightarrow \pi^{0} \rightarrow 2 \gamma$
Number of thermal nuclei can be derived from $\mathrm{H} \alpha$ surface brightness (e.g. Raymond+07).
\square Cosmic-ray electrons: $\eta_{\text {e }}$ $e_{\mathrm{CR}}+\underset{\text { known }}{\gamma_{\mathrm{CMB}}} \rightarrow \gamma_{\mathrm{IC}}$

- Generation of Magnetic field: η_{B} Related to Synchrotron surface brightness $\mathrm{L}_{\text {syn }}$

$$
\eta \equiv \frac{T_{\mathrm{RH}}-T_{\mathrm{down}}}{T_{\mathrm{RH}}}
$$

We can observationally constraint the energy budget of collisionless shock in detail.

Once we determine the η and distance

Downstream temperature

$$
k T_{\mathrm{down}}<k T_{\mathrm{RH}} \equiv \frac{3}{16} \mu m_{\mathrm{p}} V_{\mathrm{sh}}^{2}
$$

Cosmic-ray Acceleration

Downstream

kinetic energy

$$
\eta \equiv \frac{T_{\mathrm{RH}}-T_{\mathrm{down}}}{T_{\mathrm{RH}}}
$$

$\eta=\eta_{\mathrm{e}}+\eta_{\mathrm{p}}+\eta_{\mathrm{B}}$

$$
\begin{aligned}
L_{\gamma} & =L_{\mathrm{IC}}\left(\eta_{\mathrm{e}}\right)+L_{\pi^{0}}\left(\eta_{\mathrm{p}}\right) \\
& =a \eta_{\mathrm{e}}+b \eta_{\mathrm{p}} \\
L_{\mathrm{syn}} & =c \eta_{\mathrm{e}} \eta_{\mathrm{B}}
\end{aligned}
$$

Surface brightness η and coefficients a, are detectable $\quad b$, and c are known

We have three unknowns and three equations!

We can observationally constraint the energy budget of collisionless shock in detail.

Line Transfer Model

Parameters:

(1) Upstream number density $n_{\text {tot }, 0}$
(2) Upstream ionization degree χ_{0}
(3) Downstream proton temperature $T_{\text {down }}$
(4) Downstream electron temperature $T_{\mathrm{e}}=\beta T_{\mathrm{p}}$
(5) Energy loss rate η

Shock jump condition:
Cohen+98 (like a radiative shock) Pure hydrogen plasma.
Excitation level is solved up to 4f.
Polarization is estimated only for the downside of shock.

Applications of $\mathrm{H} \alpha$

Comparison of the proper motion and the downstream temperature had been relied on for an estimation of distance to the SNR (Chevalier+80).

The significant energy loss of shock was
2000~ suggested (e.g. Hughes+00, Warren+05, Helder+09,13). The previous estimation of distance became doubtful.

We can estimate the distance by combination of the loss rate by polarization and the proper motion.

