Primordial Black Hole Dark Matter

New Venues in Formation & Detection

Volodymyr Takhistov

University of California, Los Angeles (UCLA)

PBH as **DM**

- Black holes
 - astrophysical → old stars
 - primordial → early Universe [Zeldovich, Novikov, 1967; Hawking, 1971; Carr, Hawking, 1974]

PBH as **DM**

- Black holes
 - astrophysical → old stars
 - primordial → early Universe [Zeldovich, Novikov, 1967; Hawking, 1971; Carr, Hawking, 1974]

- Why get excited about PBH DM?
 - no clear signs of particle DM
 - O GW astronomy [Bird+ 2016, ...]
 - generic in many BSM models
 - help solve astro puzzles
 - already appear in standard cosmology (but unlikely)

Status (2017)

Status (2017)

Status (NOW)

How do PBHs form?

PBH formation: radiation-dominated era

• THE "standard scenario": large perturbations ($\delta \sim 1$) enter horizon \rightarrow collapse

[Kawasaki, Sasaki, Yanagida ...]

PBH formation: radiation-dominated era

• THE "standard scenario": large perturbations ($\delta \sim 1$) enter horizon \rightarrow collapse

[Kawasaki, Sasaki, Yanagida ...]

PBH formation: radiation-dominated era

• THE "standard scenario": large perturbations ($\delta \sim 1$) enter horizon \rightarrow collapse

[Kawasaki, Sasaki, Yanagida ...]

- Need to fine tune inflaton potential
 - → sensitive to restrictions on field behavior
 - Example: "string swampland conjectures" [Kawasaki, VT, PRD, 2018]

New generic PBH production mechanism:

scalar field fragmentation

[Cotner, Kusenko, PRL, 2016] - complex field

[Cotner, Kusenko, VT, PRD, 2018] - real field

[Cotner, Kusenko, Sasaki, VT, 2019] - general framework

Scalars in early Universe

Scalars exist (Higgs) & generic in BSM theories (e.g. moduli)

SUSY predicts many scalars, typically U(1) charged

Scalars in early Universe

Scalars exist (Higgs) & generic in BSM theories (e.g. moduli)

SUSY predicts many scalars, typically U(1) charged

- Take charged scalar with self-interactions after inflation:
 - → field can break into piece from instabilities (Q-balls) [Coleman, 1985]

Lumps are big (% of Horizon) and stable (conserved charge)

Simulations

[Multamaki, Vilja, 2002]

PBH formation idea

Fragmentation is random & pieces are big: large density fluctuations
 → density fluctuations independent from inflation

Some rare regions can collapse to BHs

Resulting PBHs

Resulting PBHs

PBH from low-scale SUSY → "PBH miracle"

Novel ideas for signals in open parameter space?

Compact stars as PBH laboratories

- PBHs can be effectively captured by NS or WD in DM-rich environments (e.g. Galactic Center)
- Captured PBH settle and grow inside, destroy star
 → new signals, can help solve open problems

Compact stars as PBH laboratories

- PBHs can be effectively captured by NS or WD in DM-rich environments (e.g. Galactic Center)
- Captured PBH settle and grow inside, destroy star
 - → new signals, can help solve open problems
 - → r-process nucleosynthesis, 511 keV, FRBs

[Fuller, Kusenko, VT, PRL, 2017]

- + Viewpoint Highlight by H.-T. Janka
- → solar-mass BHs, GRBs, microquasars

[VT, PLB, 2017; VT, PLB, 2018]

PBH inside millisecond pulsar

• Star consumed → contracts → spins up

Neutron rich matter ejected

PBH inside millisecond pulsar

• Star consumed → contracts → spins up

Neutron rich matter ejected

PBH-NS: r-process nucleosynthesis

- Neutron-rich ejecta
 - → heavy element production (r-process)

PBH-NS: r-process nucleosynthesis

- Neutron-rich ejecta
 - → heavy element production (r-process)

 PBH-NS consistent with abundance in Milky Way & UFDs

PBH-NS laboratories: long kilonova

Kilonova: afterglow from ejecta

- PBH-NS vs. mergers
 - → kilonova w/o merger GWs

PBH-NS laboratories: FRBs

- Release of NS B-field energy as radio
 - → non-repeating FRB

PBH-NS laboratories: 511 keV

- Galactic Center 511 keV γ-rays
 - Likely e+ annihilation

Consistent w/ PBH-NS production

PBH-NS laboratories: 511 keV

- Galactic Center 511 keV y-rays
 - Likely e+ annihilation

Consistent w/ PBH-NS production

** can be explained from regular NS mergers [Fuller, Kusenko, Radice, VT, PRL, 2019]

PBH-NS/WD laboratories: solar-mass BHs

No astro BHs ≤ 2M∘

PBH-NS/WD laboratories: solar-mass BHs

No astro BHs ≤ 2M∘

PBH + NS/WD
 → new solar-mass BHs

[VT, PLB, 2017]

PBH-NS laboratories: GRBs

- "Standard" GRB progenitor: BH + disk
 - → disk accreted, binding energy released

PBH-NS laboratories: GRBs

- "Standard" GRB progenitor: BH + disk
 - → disk accreted, binding energy released

Could be from PBH-NS → GRB without GW

[VT, PLB, 2018]

PBH-NS laboratories: GRBs

- "Standard" GRB progenitor: BH + disk
 - → disk accreted, binding energy released

Could be from PBH-NS → GRB without GW

[VT, PLB, 2018]

PBH-WD laboratories: microquasars

ullet WDs have non-relativistic jets $L_{
m jet} \sim rac{1}{R}$

PBH-WD laboratories: microquasars

ullet WDs have non-relativistic jets $L_{
m jet} \sim rac{1}{R}$

WD + PBH → solar-mass BH accretor
 radius ♥, luminosity ⁴

Continuous relativistic jet solar microquasar

PBH-NS laboratories: GRB jets

GRB jet

[VT, PLB, 2018]

PBH-NS/WD laboratories: jet positrons

e+ from jets can contribute to excess → astro-DM connection

Summary

- Renaissance era in PBH research
 - → strong synergy with emerging field of multi-messenger astronomy
- Simple general formation mechanism: scalar field fragmentation
 - → avoids usual issues of fine-tuning
- Compact stars as PBH laboratories: new signals, help solve astro puzzles