Study of middle-aged Pulsar Wind Nebulae showing large offsets between their pulsar and their VHE Gamma-ray Emission

Michelle Tsirou* – Zakaria Meliani** – Yves Gallant*

30.07.2019

Gamma-ray indirect session 9

* : LUPM, Montpellier - France
** : LUTh, Paris - France

Pulsar wind nebulae

"Magnetised clouds of

ultra-relativistic accelerated e⁻ and e⁺,

powered by the rotational energy of

their central pulsar"

- Magneto-hydrodynamic driven outflow :
 - magnetisation $\sigma \sim 0.01$
 - Lorentz factor $\gamma \sim 10^4 10^7$
 - adiabatic index $\Gamma = 4/3$
- Prone to synchrotron radiation + Inverse Compton scattering on CMB, FIR and NIR radiation fields

- Pulsar with an energy loss rate E that will decrease due to braking over time
- Based on a "conventional" pulsar spin down
 - + dipolar constant B-field assumption
 - $\rightarrow \tau_{\text{ch}}$ sets an upper limit on

the age of the system

H.E.S.S. Galactic Plane Survey

 78 sources extracted from a homogeneous analysis
 in the Galactic plane region

- Population study of these TeV PWNe in companion paper (HESS Collaboration, 2018)

 - \rightarrow 14 firmly identified PWNe

Confirmed PWNe observed by H.E.S.S.

• 8 out of 14 PWNe show a **significant** pulsar-TeV emission offset

<i>HGPS</i> source name	d _{offset} (pc)	R _{PWN} (pc)	ATNF pulsar name	D (kpc)	$ au_{ m ch}$ (kyr)	$v_{\rm PM}$ (km.s ⁻¹)	$\dot{E}_{\rm sd}$ (10 ³⁶ erg.s ⁻¹)	$B_{\rm surf} (10^{12} \text{ G})$	P (ms)
J1825-137	33.0 ± 6	32.0 ± 2.0	B1823-13	3.61	21.4	399	2.8	2.8	101.5
J1303-631	20.5 ± 1.8	20.6 ± 1.7	J1301-6305	10.72	11.0	-	1.7	7.1	184.5
J1837-069	17.0 ± 3	41.0 ± 4.0	J1838-0655	6.6	22.7	-	5.6	1.9	70.5
J1418-609	7.3 ± 1.5	9.4 ± 0.9	J1418-6058	1.89	10.3	-	4.9	4.4	110.6
J1356-645	5.5 ± 1.4	10.1 ± 0.9	J1357-6429	3.1	7.3	-	3.1	7.8	166.1
J1420-607	5.1 ± 1.2	7.9 ± 0.6	J1420-6048	5.63	13.0	-	10.4	2.4	68.2
J0835-455	2.37 ± 0.18	2.9 ± 0.3	B0833-45	0.28	11.3	77	6.9	3.4	89.3
J1514-591	< 4.0	11.1 ± 2.0	B1509-58	4.4	1.6	-	17.5	15.4	151.3

Physical drivers of PWN asymmetry

Deformation of the nebula

may be possibly caused by :

- Pulsar wind asymmetric outflow
- B-field topology
 (Reynolds et al. 2012)

Asymmetric explosion → kick of the pulsar
 (Gaensler et al, 2006)

Inhomogeneous ambient medium

(Blondin et al., 2001 ; Temim et al. 2015 ; Slane et al. 2018)

• Yield an asymmetric • Morphology of the pulsar

wind nebula

Physical drivers of PWN asymmetry

Pulsar proper motion

Spin-down energy loss rate E (erg.s⁻¹)

M. Tsirou, Z. Meliani, Y. A. Gallant | ICRC 2019

Expected proper velocities to explain offset

Simulating composite systems

• Simulations done with MPI-AMRVAC 2.0 :

MPI - Adaptive Mesh Refinement Versatile Advective Code

• Use of a relativistic MHD physics module applied in an adaptively refined/coarsened grid

Why?

 \rightarrow multi-scale evolving system of :

- The pulsar wind (PW)

 \rightarrow size determined by its termination shock (TS)

- The pulsar wind nebula (PWN),

 \rightarrow region defined by the TS up to the expansion region of the shocked outflow bubble

- The supernova remnant (SNR),

 \rightarrow forward shock (FS) towards the ISM + reverse shock (RS) inwards the nebula

Simulating composite systems

Illustration of the system radii evolution with time in the rest frame of the SNR FS travelling in the ISM, up until the RS reaches the PWN → free expansion in an ejecta dominated phase

- \rightarrow multi-scale evolving system of :
- The pulsar wind (PW)
 - \rightarrow size determined by its termination shock (TS)
- The pulsar wind nebula (PWN),

 \rightarrow region defined by the TS up to the expansion region of the shocked outflow bubble

- The supernova remnant (SNR),
 - \rightarrow forward shock (FS) towards the ISM + reverse shock (RS) inwards the nebula

Relativistic hydrodynamic simulations : 1D set-up

• Grid size = 6.10¹⁹ cm (~19.5 pc),

96 grid cells \rightarrow grid block resolution of 8 cells at level 1 of refinement (base grid) , total maximum number of grid levels set manually for each ROI

- ISM : $n_0 = 1.0 \text{ cm}^{-3}$, T = 10⁴ K
- SNR : $t_{start sim} = 80 \text{ yrs}$, $E_{sN} = 3.10^{51} \text{ erg}$, $M_{ej} = 5 \text{ M}_{\odot}$, $v_{ej, max} = 5 700 \text{ km}.s^{-1}$ ($E_{kin} \sim 97 \% E_{sN}$)
- PW : E = 5.10³⁸ erg.s⁻¹, $t_{after start sim} = + 20$ yrs, Lorentz $\gamma = 10$
- Pulsar : ($R_{PSR} = 10 \text{ km}$, $M_{PSR} = 1.5 \text{ M}_{\odot 0}$), $P_0 \sim 33 \text{ ms}$, braking index n=3

M. Tsirou, Z. Meliani, Y. A. Gallant | ICRC 2019

Why is the VHE emission from middle-aged PWNe offset from the pulsar position? PoS(ICRC2019)809

Relativistic hydrodynamic simulations : free expansion

M. Tsirou, Z. Meliani, Y. A. Gallant | ICRC 2019

Relativistic hydrodynamic simulations : evolution

M. Tsirou, Z. Meliani, Y. A. Gallant | ICRC 2019

Why is the VHE emission from middle-aged PWNe offset from the pulsar position? PoS(ICRC2019)809

Towards a relativistic (magneto)-hydrodynamic 2D framework

- Ongoing tests on 2D HD simulations with :
 - ⁻ Grid size = $1.2 \cdot 10^{20}$ cm (~40 pc),
 - 96 x 192 grid cells \rightarrow grid block resolution of 8 cells at level 1 of refinement (base grid),
 - total maximum number of grid levels set manually for each ROI \rightarrow computationally expensive
 - ⁻ ISM : $n_0 = 1.0 \text{ cm}^{-3}$, T = 10^4 K
 - SNR : $t_{start sim} = 500 \text{ yrs}$, $E_{sN} = 3.10^{51} \text{ erg}$, $M_{ej} = 5 \text{ M}_{\odot}$, $v_{ej, max} = 5 700 \text{ km.s}^{-1}$ ($E_{kin} \sim 97 \% E_{sN}$)
 - ⁻ PW : E = 5.10^{38} erg.s⁻¹, Lorentz γ = 10

- Pulsar : (R_{PSR} = 10 km, M_{PSR} = 1.5 M_{\odot}), P₀ ~ 33 ms , braking index n=3 , **v_{PM} = 500 km.s⁻¹**

M. Tsirou, Z. Meliani, Y. A. Gallant | ICRC 2019

Goals, questions and future work

- We simulate in a **relativistic** (M)HD framework the dynamical evolution of composite
 - {pulsar wind pulsar wind nebula supernova remnant} systems.
 - \rightarrow In the process of producing (and understanding!) 2D simulations to study the asymmetry

What are the offset distances expected if :

- A pulsar has a high proper velocity ?

- Ambient medium has a strong density gradient?

- Both of the above?

• Implications on the modelling of PWNe from future high resolution VHE gamma-ray observations

Goals, questions and future work

- We simulate in a **relativistic** (M)HD framework the dynamical evolution of composite
 - {pulsar wind pulsar wind nebula supernova remnant} systems.
 - \rightarrow In the process of producing (and understanding!) 2D simulations to study the asymmetry

What are the offset distances expected if :

- A pulsar has a high proper velocity ?

- Ambient medium has a strong density gradient?

- All of the above?

• Implications on the modelling of PWNe from future high resolution VHE gamma-ray observations

Thank you for your attention!

Back-up

M. Tsirou, Z. Meliani, Y. A. Gallant | ICRC 2019

Rel 2D HD with no PM

M. Tsirou, Z. Meliani, Y. A. Gallant | ICRC 2019

Why is the VHE emission from middle-aged PWNe offset from the pulsar position? PoS(ICRC2019)809