





**Ekrem Oğuzhan Angüner for the CTA Consortium** 

### **Outline**



- Introduction: Cosmic-Rays & PeVatrons
- Cherenkov Telescope Array
- Simulations and data analysis
- Results
- Large scale simulations
- Conclusions & Future studies

# **Introduction: Cosmic Rays**





- The cosmic-ray (CR) spectrum shows two distinct features called "the knee" and "the ankle".
- The location of the knee for proton and He spectra is at 400–500 TeV [1].
- The knee feature can be the result of different 'knee' like features seen at increasing CR energies for increasing atomic number.
- In order to maintain the CR intensity at the observed level, the CR sources must provide 10<sup>41</sup> erg/s [2].

The cosmic-ray spectrum measured from the Earth

#### Introduction: PeVatrons









PeVatrons  $\rightarrow$  CR factories able to accelerate particles up to PeV (10<sup>15</sup> eV) energies.

- 1 PeV protons  $\rightarrow$  ~100 TeV gamma-rays assuming  $E_{proton}$  /  $E_{v-rav}$  = 10 [3].
- The first detection of a Galactic PeVatron at the Galactic Center region [4].
- The 95% C.L. lower limit on the proton cutoff energy is 0.4 PeV.
- PeVatron candidates:
  - Supernova remnants (SNRs), runaway CRs
  - Super massive black holes
  - Stellar clusters / star-forming regions [5]
- PeVatron sources are expected to have
  - Hard power-law spectra (~E<sup>-2</sup>)
  - Spectra extending up to 50 TeV and beyond

# Cherenkov Telescope Array (CTA) (Cta



- The CTA is the next generation gamma-ray observatory consisting of ~100 telescopes.
  - Two sites → Northern and Southern hemisphere
  - The Southern array → measurements up to 300 TeV
- One of the key science projects of the CTA Consortium is the search for cosmic PeVatrons [6].
  - Dedicated 50 h of deep observations of the best five PeVatron candidates.
- Galactic Plane Survey (GPS)
  - Survey sensitivity  $\rightarrow 2-4$  mCrab
  - Energy threshold → 0.125 TeV
  - Average exposure  $\rightarrow 10 15 \text{ h}$  [7]
- The determination of efficient criteria to identify PeVatron candidates during the survey is essential.



Simulated CTA GPS [7]

# CTA Simulations & Data analysis (Cta



- A study based on simulations to determine efficient PeVatron selection criteria.
  - Simulate (50 h) CTA observations of the PeVatron candidate HESS J1641–463 [8].
  - Simulate (10 h) point sources → Power-law (PL) and Exponential Cutoff Power-Law (ECPL).
  - Cosmic-ray Background

$$\begin{array}{l} \text{PeVatron} \\ \text{Phase} \\ \text{Space} \end{array} \begin{cases} \Phi_{_{0}} \text{ (1 TeV) = (4, 8, 16, 24, 32, 40, 48) mCrab} & \Phi(E) = \Phi_{0}. \left(\frac{E}{E_{0}}\right)^{-\gamma} \\ \Gamma = -1.7, -2.0, -2.3 \\ E_{_{\text{C,Y}}} = 50 \text{ TeV, 100 TeV, 200 TeV} & \Phi(E) = \Phi_{0}. \left(\frac{E}{E_{0}}\right)^{-\gamma}. \exp{-\left(\frac{E}{E_{c}}\right)} \end{cases}$$

- Energy Range → [0.1, 160.0] TeV
- Analysis of the simulates sources:
  - The reflected background estimation method [9].
  - Fit data to PL and ECPL models. Test statistics to determine the best spectral model.
  - Derive the 95% confidence level (C.L.) lower limits on the cutoff energy.
- $1^{st}$  approach  $\rightarrow$  1000 Simulations, fit to ECPL model, take 5 percentile as 95% C.L. lower limits. 2<sup>nd</sup> approach → Use profile likelihood method [10].

# PeVatron candidate source HESS J1641-463



- HESS J1641–463 [8] is a promising PeVatron candidate source.
  - Point-like H.E.S.S. source
  - Exhibits a hard spectrum

$$\Gamma = -2.07$$
,  $\Phi$  (> 1TeV) = ~18 mCrab

- No clear sign of a cutoff
- Extending up to few tens of TeV
- There are dense gas regions coincident with the source position.
  - Interstellar medium properties (NANTEN data)
  - $n_{gas} = 100 \text{ cm}^{-3}$
  - distance = 11 kpc





# PeVatron candidate source HESS J1641-463



- We simulated 50 h CTA observations of HESS J1641–463.
  - assume intrinsic cutoffs of 50 TeV, 100 TeV and 200 TeV (keep Γ and Φ fixed)
- Modeling of hadronic emission → Proton spectrum cutoff energy distribution



Median: 0.82 PeV Lower limit: 0.26 PeV Median: 1.97 PeV Lower limit: 0.68 PeV Median: 10.31 PeV Lower limit: 1.21 PeV

• HESS J1641– 463 (or similar hard spectrum sources) can contribute to the knee in the observed proton and helium spectra if they have cutoff in their spectra above 50 TeV.

# **Spectral cutoff detection maps**



 Spectral cutoff detection maps for intrinsic cutoff energies of 50 TeV (left), 100 TeV (middle) and 200 TeV (left)



- The spectral cutoff detection probability increases with source brightness and/or as source spectrum gets harder due to the increased statistics at high energies.
- The spectral cutoff of 50 TeV and 100 TeV for point sources can be detected with the foreseen CTA GPS performances.
- The detection of intrinsic 200 TeV cutoff during the survey may be possible for very hard and bright sources.

#### **PeVatron Metric**



• PeVatron metric is a figure of merit for PeVatron candidate sources. The metric can provide relations between spectral parameters and derived 95% C.L. lower limits on the cutoff energy.





- The 95% C.L. lower limits on the cutoff energy increase
  - as the source gets brighter
  - as the source spectrum gets harder
  - as the intrinsic cutoff energy gets higher.





 This fact can be used for predicting the intrinsic cutoff energy of a source of interest.

## Large scale simulations



- Large scale simulations with 1000 sources to test the selection power of the metric.
- The sources are simulated by following ECPL models (random parameters, 10 h).
  - Calculate the total number of excess events (above 50 TeV)
  - Calculate the 95% C.L. lower limits for each source.
- The 95% C.L. lower limits are derived by
  - Scramble  $N_{On}$  and  $N_{Off}$  events (Poisson)
  - Create 1000 fake spectra for each source.
- Strong correlation between the 95% C.L. lower limits and high energy excess.
- Both parameters are promising for the final selection criteria.
- No prediction on the intrinsic cutoff can be made
  - in the case of low excess
  - in the case of low 95% C.L. lower limits.



Such sources are not promising candidates → can be ruled out.

### Large scale simulations



- PeVatron metric for the prediction of intrinsic cutoff.
  - The expected 95% C.L. lower limit → by interpolating between the metric lines.

```
Fitted index (\Gamma)

Metric

95% C.L. (Ec = 50 TeV)

95% C.L. (Ec = 100 TeV)

95% C.L. (Ec = 200 TeV)
```

Metric selection  $\rightarrow$  95% C.L. from data > expected 95% C.L. from the metric (case 100 TeV). Excess selection  $\rightarrow$  Rule out the sources with low excess at high energies.





#### **Conclusions & Future studies**



- Our simulation studies suggest that intrinsic spectral cutoffs of 50 TeV and 100 TeV can be
  detected during the CTA GPS for a conservative observation time of 10 h.
  - 68% detection prob 50 TeV cutoff  $\rightarrow \Gamma = \sim 2.0$ , flux  $\sim 16$ mCrab
  - 68% detection prob 100 TeV cutoff $\rightarrow \Gamma = \sim 2.0$ , flux  $\sim 30$ mCrab
- We show that the 95% C.L. lower limit on the cutoff energy increases
  - with source brightness
  - as source spectrum gets harder
  - with increasing intrinsic cutoff.
- Preliminary investigation show that indications on the intrinsic cutoff energy can be estimated using the 95% C.L. lower limit and the excess events at high energies.
- Further studies are needed for the identification of the criterion to select the 5 most promising PeVatron candidates.
- On-going studies:
  - Investigation of extended sources
  - Hadronic modeling of PeVatron candidate sources
  - Investigation of systematic effects
  - Simulation of Galactic young SNR population studies [10]

#### References



- [1] B. Bartoli et al. [ARGO-YBJ and LHAASO Collaborations], Phys. Rev. D 92 (2015) no.9, 092005, doi:10.1103/PhysRevD.92.092005
- [2] Gaisser T.K. (1990). Cosmic rays and particle physics, (Cambridge University Press)
- [3] Kelner, S. R., Aharonian, F. A. & Bugayov, V. V. 2006, Phys. Rev. D, 74, 034018
- [4] H.E.S.S. Collaboration, Abramowski, A., Aharonian, F., et al. 2016, Nature, 531, 476
- [5] Aharonian, F., Yang, R., de Oña Wilhelmi, E., 2019, Nat.Astron., 3, no.6, 561-567
- [6] Science with the Cherenkov Telescope Array, arXiv:1709.07997 [astro-ph.IM]
- [7] Zanin, R. for the CTA Consortium, PoS(ICRC2017)740
- [8] H. E. S. S. Collaboration, Abramowski, A., Aharonian, F., et al. 2014, A&A, 562
- [9] Berge, D., Funk, S., & Hinton, J. 2007, A&A, 466, 1219
- [10] Trichard, C. for the CTA Consortium, PoS(ICRC2017)846
- [11] Cristofari, P., Mon.Not.Roy.Astron.Soc. 471 (2017) no.1, 201-209