A Systematic Search for TeV Halos associated with known pulsars

> Andrew Smith, on behalf of the HAWC Collaboration University of Maryland, College Park 36th ICRC, Madison, WI July 31,2019

HAWC Collaboration (Mexico, USA, Germany, Poland, Costa Rica and Italy)

Pulsar Halos Ubiquitous?

- 'Mature' pulsars have VHE 'halos' from interaction accelerated electrons diffusing into the ISM.
- Halo geometry can be used to assess the charged particle diffusion rates vs in the vicinity of pulsars.
- Are halos ubiquitous and if so, are accelerated electron populations similar for all halos?
- Does not include sensitivity vs size, declination.
- Would also like to observe younger pulsars.

Andrew Smith - University of Maryland, College Park

Search Method

- Assume a single position, at pulsar.
- Assume a Gaussian morphology.
 - A Gaussian is more compact than a full energy dependent diffusion model, leading to less confusion with neighboring sources.
- Use Geminga as a baseline to predict the size of each pulsar candidate, the search can be done taking only a single trial for each.
- Use the known distance and age to predict the size of each candidate.
- If you want to hear about understanding diffusion in the vicinity of PWNe, see contributions by : Hao Zhou and Chad Brisbois
- Data set used: 1128d of HAWC Live Time.

Search Method (2)

- Many candidates not 'mature', defined as 100ky by Linden et al, so they won't have grown to their nominal Geminga-like size
- Need a simple model for evolution.
- Use Geminga as a baseline. Apparent size (S) is just the predicted size (based on age) divided by the ratio with the size of Geminga, scaled with distance (d)

$$S_{PWN} = S_{Geminga} \times \frac{d_{Geminga}}{d_{PWN}} \times Size(Age)$$

Age dependent evolution correction

And similarly with flux (F)...

$$F_{PWN} = F_{Geminga} \times \frac{\dot{E}_{PWN}}{\dot{E}_{Geminga}} \times \frac{d^2_{Geminga}}{d^2_{PWN}} \times Luminosity(Age)$$

Andrew Smith - University of Maryland, College Park

Pulsar Evolution

- Want to predict the properties of young pulsars (not reached full luminosity or size.
- Assume pulsar halos evolve and asymptotically approach Geminga-like halos as they mature.
- use τ = 20ky
- Full time dependent evolution model is better, but this gets the job done. (see M. Di Mauro et al for details of how to do this)

Andrew Smith - University of Maryland, College Park

ATNF Catalog

- ATNF Catalog (v1.6) identifies 2702 pulsar locations
- 450 have measured spin down power (E-dot) and distances and measured age<1My
- 177 are within the HAWC field of view declination in [-16°,+54°]

Andrew Smith - University of Maryland, College Park

36th ICRC Madison WI, USA

10

Radius= 0.0°

Andrew Smith - University of Maryland, College Park

36th ICRC Madison WI, USA

11

Confused Regions

- Many of these pulsars are in complex regions, where source confusion may be an issue.
 - Multi-source fit required for most targets.
 - Exclude plane: |b|<4 and I in [0,100] for this analysis.

Andrew Smith - University of Maryland, College Park

Results:

Size indicates size of target

Results:

Size indicates size of target

PSR J1740+1000

- Age: 114 ky
- Distance: 1.23 kpc
- Pred Size: 0.276 deg
- Signif: 3.0σ (12.8σ pred)
- Meas / Pred Flux = 0.24
- b=20.3°, ejected from the plane? may have a large proper motion?
- Unusual emission: Radio quiet, absorption lines possibly due to an anomalously small B-field.
- VERITAS limit of <1% Crab, consistent with this observation considering extension, spectrum...

J0729-1448 (in outer galaxy, poor declination)

- Age: 35.2 ky
- Distance: 2.68 kpc lacksquare
- Pred Size: 0.115 deg
- Signif: 1.7σ (1.3σ pred.)
- Measured/Expected Flux = 1.35 lacksquare

-10

J0631+1036 (South of Geminga)

- Age: 43.6 ky
- Distance: 2.10 kpc
- Pred Size: 0.153 deg
- Signif: 3.3σ (3.9σ pred.)
- Meas/Pred Flux = 0.81

.10631 + 1036

J0614+2229 (near IC443)

- Age: 89 ky
- Distance: 1.74 kpc
- Pred Size: 0.194 deg
- Signif: 1.9σ (2.2σ pred.)
- Meas / Pred Flux = 0.84
- Fits model well, but is clearly confused region with IC443.

Conclusions

- Indication of possible emission from several candidates.
- Source confusion is a problem for all but a handful of targets.
- Need to do multi-source fits to isolate source contributions.

Backup

Andrew Smith - University of Maryland, College Park

36th ICRC Madison WI, USA

23

Crab

(this is a extreme case for my evolution model, so don't take it too seriously)

- Age: 1.26ky
- Distance: 2.00kpc
- Pred Size: 0.042° (HESS measures extent at 0.014°)
- Signif: 162σ
- Meas./Pred Flux = 0.22
- Sub-luminous

Andrew Smith - University of Maryland, College Pa

Extra

HESS measures Crab as 52" = 0.014°

