Dark Matter Searches with HAWC

Joe Lundeen for the HAWC Collaboration

July, 2019
Continuous Spectra

- WIMP dark matter can annihilate or decay to standard model particles
 - Interaction products then produce photons
- Energy spectrum characterized by hard cutoff at DM mass
- Search for gamma-ray excesses with characteristic shape originating from known DM halos
- Can constrain velocity-weighted cross section or decay lifetime
- Emphasis on multi-TeV mass dark matter

\[
\frac{d\Phi}{dE_{\text{annihilation}}} = \frac{J}{8\pi} \frac{(\sigma v) dN(M, \text{channel})}{M^2} \frac{d\Phi}{dE_{\text{decay}}} = \frac{D}{4\pi} \frac{1}{\tau M} \frac{dN(M, \text{channel})}{dE}
\]

\[
J = \int \int \rho_{dm}(l, \Omega) dl d\Omega \quad D = \int \int \rho_{dm}(l, \Omega) dl d\Omega
\]
HAWC Detector

- 22,000 m2 air shower array
- 300 Water Cherenkov detectors (WCD)
- 200,000 liters of purified water per WCD
- 4 sensors (photo-multiplier tubes) per WCD
- Completed March 2015
- Near-continuous duty cycle
- Field of view within 2/3 of sky
- Ideal for all-sky surveys

Citaltepetl
Pico de Orizaba
5160m a.s.l.

Tliltepetl
Sierra Negra
4582m a.s.l.

Large Millimeter Telescope

HAWC Detector

HAWC
4100 m a.s.l.

HAWC 4100 m a.s.l.
HAWC Properties and Advantages

- Wide simultaneous field of view (~2 sr)
 - Sensitive to highly-extended sources
 - Direct integration for background estimation
- Observation of ~2/3 of sky every day
 - Ability to survey for new sources
 - Can search for DM in multiple regions simultaneously → combined searches
- Archival data
- Sensitivity is declination-dependent
 - Due to atmospheric attenuation of showers
 - Better sensitivity to sources that transit overhead

Dark Matter Search Targets
Dwarf Galaxies

- Excellent candidates for DM searches
- Relatively sparse star population
 - No known normal-matter production mechanism for high-energy gamma-rays
 - Very little astrophysical background
- Continuous duty cycle:
 - Can easily perform combined limits
 - Can add additional limits as more are discovered

- Two Classes:
 - Dwarf Spheroidal
 - 15 candidates
 - See next slide
 - Dwarf Irregular
 - 31 candidates
 - See next talk by Sergio Hernandez
Limits from Dwarf Spheroidals

Note: The J-factor of Triangulum II is not well known. Limits are reported with and without Tri II.
Joint Limits

- Joint search of the dwarf spheroidals with multiple experiments
 - HAWC, HESS, MAGIC, VERITAS, Fermi-LAT
 - Complete coverage of all multi-GeV through multi-TeV dark matter masses
 - First ever analysis of its kind

- See talk from Monday by Louise Oakes and proceedings
Extended Targets

- M31 galaxy, Virgo Cluster, Galactic halo
- Wide field of view needed
- Allows for full treatment of morphology
- Background estimation
 - Need “off” regions sufficiently far from source to avoid signal contamination
 - Wide field of view and continuous duty-cycle allows for simultaneous observation of “on” and “off” regions
- Need to consider systematics from spatial profile
- Particularly well-suited for setting decay lower-limits
Density Profile Uncertainty

- Behavior of dark matter density not well constrained towards center of large halos
- J-factors and D-factors typically have large systematic from density profile
- Signal boosts from theorized substructure contribution

Einasto Profile (Cuspy)

\[\rho(r) = \rho_s e^{\frac{-2}{\alpha}[(r/r_s)^{\alpha} - 1]} \]

Burkert Profile (Cored)

\[\rho(r) = \frac{\rho_s}{(1 + r/r_s)(1 + (r/r_s)^2)} \]
• Closest galaxy (besides the Milky Way)
 - Combined with high dark matter content, gives large expected flux
• Also highly extended
 - Requires treatment of morphology
 - Considered different density profiles
• Substructure
 - Different models of substructure content considered
 - Results shown for median model
• Yields strong decay limits

See: Albert et. al. *Search for Dark Matter Gamma-ray Emission from the Andromeda Galaxy with the High-Altitude Water Cherenkov Observatory*
Decay Limits from M31

- HAWC M31 MED (this work)
- HAWC Gal. Halo Einasto
- HAWC Combined dSph
- Fermi LAT Isotropic
- VERITAS Segue I
- Fermi LAT Combined dSph
- IceCube (2014)
The Virgo Cluster

- Highly extended
 - ~10 x10 degrees
 - Morphology consists of two distinct peaks
- Different models of substructure contribution
 - High, median, and low substructure content models
 - Only results from median case shown here
- High dark matter content
- Nicely compliments constraints from other experiments
- See poster presentation by Tolga Yapici for details
Decay Limits from Virgo

\[\chi \rightarrow b \bar{b} \]

\[\chi \rightarrow \tau^+ \tau^- \]

PRELIMINARY
The Galactic Halo

- Closest large halo → large expected flux
- Largest flux expected towards the Galactic center, however:
 - Large systematic from unconstrained density profile
 - Possible contamination from visible-matter sources
- HAWC field of view enables observation of larger regions further from the center
 - Mitigates effect of density profile
 - Avoids contamination from sources in Galactic plane
- Previous analysis in Fermi Bubble region (see: HAWC Collaboration, A. U. Abeysekara et al., JCAP 1802 (2018) 049.)
- Current analysis using even wider region (see poster and proceedings by Joe Lundeen)
Gamma-ray Lines

- Direct annihilation of dark matter to gamma-rays
- Manifests as a delta function in energy spectrum
- “Smoking gun” for dark matter
 - Only mechanism that can produce this shape at TeV scale
 - Location of line immediately reveals the dark matter mass.
- New energy estimation techniques allow HAWC to search for this feature
First Limits on Gamma-ray Lines

- Performed combined upper limit using dwarf spheroidal galaxies
- Most constraining limits above ~20 TeV
- Nicely compliment searches by IACTs
Summary

- HAWC's wide field of view and continuous duty cycle make it ideal for surveys and extended source analysis
- Can easily perform combined searches
 - Improves sensitivity of constraints
 - Currently extending to combinations with other experiments
- Sensitive to extended sources: yield strong decay limits
- Now able to search for gamma-ray lines
 - Energy estimators also allow searches at higher masses
- More results coming from Galactic halo
Backup Slides
Likelihood Fitting

- Use log likelihood ratio used to identify signals
 - N=observed counts in each bin
 - B=expected background
 - S=expected excess counts from dark matter spectrum
 - Treat counts in each bin as Poisson-distributed
 - Calculate likelihoods for both null (background) hypothesis and dark matter hypothesis

- Wilks’ theorem
 - TS is chi-squared distributed
 - Allows us to treat σ as significance for 1 degree of freedom

- 95% confidence level
 - Fit such that $TS=TS_{\text{max}}-2.71$
Forward Folding

- Due to energy resolution, HAWC does not bin events by energy
- Binned by fraction of PMTs triggered (fhit)
- fhit spectrum converted back to energy spectrum
 - Use simulation of detector response to energy spectra
 - Map observed nhit spectrum back to E-spectrum that best reproduces it in simulation
 - Use maximum likelihood
Direct Integration

- Majority of HAWC events are charged cosmic rays
 - Roughly isotropic across the sky
 - Some are removed through quality cuts, but still dominate post-cut data
- Background estimated through direct integration
 - Average event rate within 2 hours (30 degrees) of a source
 - Events are background-dominated → average rate is approximately background rate
- See also: D. Fiorino, Thesis.
Density Profile Uncertainty

- Behavior of dark matter density not well constrained towards center of large halos
- J-factors and D-factors typically have large systematic from density profile

Einasto Profile (Cuspy)

\[\rho(r) = \rho_s e^{-2 \left[\left(\frac{r}{r_s} \right)^\alpha - 1 \right]} \]

Burkert Profile (Cored)

\[\rho(r) = \frac{\rho_s}{(1 + r/r_s)(1 + (r/r_s)^2)} \]
The Galactic Halo

- Closest large halo → high expected dark matter signal
- HAWC can observe highly extended region of the halo
- Requires very careful treatment of background
 - Extends across entire sky
 - If dark matter does produce gamma rays, all sky regions will contain some contribution from Galactic halo
 - No true “Off” region for background estimation
 - Need to take into account signal contamination in background
- Highly sensitive to density profile
The Galactic Halo

- Closest large halo
- Requires very careful treatment of background
 - Extends across entire sky
 - If dark matter does produce gamma rays, all sky regions will contain some contribution from Galactic halo
 - No true “Off” region for background estimation
 - Need to take into account signal contamination in background
- Highly sensitive to density profile
Decay Limits from the Galactic Halo

Obtained these limits using just a fairly small part of the halo.

Limits will improve with the more rigorous search (see poster by Joe Lundeen)
Galactic Halo Sensitivity

- Obtained by combining estimates of dark matter sensitivity with modeled density profile
- Map of point source “expected limits”: show which pixels are expected to be most constraining
 - Most sensitive pixels are combined into full ROI
 - Remaining sky is used as “off” region of background estimation

Galactic center is at edge of HAWC field of view
Limits are mostly driven by points overhead