
Effects of scattering parameters on chargesign dependent cosmic ray modulation

*M. D. Ngobeni, M. S. Potgieter,
O.P.M. Aslam, D. Bisschoff
Centre for Space Research, North-West University,
South Africa

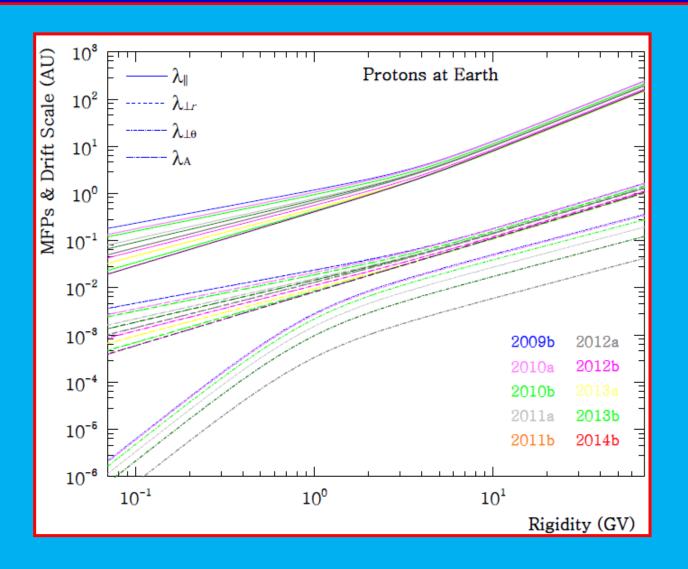
Research is partially supported by the SA National Research Foundation (NRF).

Introduction

We apply the Measurement-Validated 3D numerical model (M-V Model) of Potgieter & Vos (2017) based on Parker's transport equation (TPE).

$$K_T = K_{A0} \frac{\beta P}{3B_m} \frac{(P/P_{A0})^2}{1 + (P/P_{A0})^2} \longrightarrow K_T = \frac{\beta P}{3B_m} \left[\frac{(\omega \tau)^2}{1 + (\omega \tau)^2} \right]$$

- To make meaningful comparison the modulation of both protons and anti-protons is done using the same set of modulation parameters and diffusion coefficients.
- We illustrate and discuss differences that exist between protons and anti-protons in their intensity-time profiles and ratios (p/pbar) from 2006 till the end of 2014 due to the assumed spatial dependence of ωτ.


ICRC-USA

Corresponding modulation parameters from 2009 to 2013

Table: Summary of the modulation parameters used to reproduce the proton measurements 2009b-2013b from PAMELA.

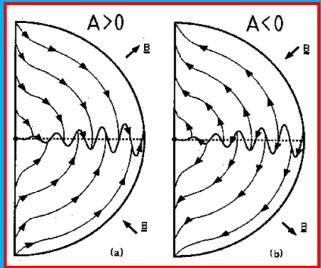
Parameters	2009Ь	2010b	2011b	2012b	2013b
$\alpha \; (degree)$	9.50	21.01	45.21	62.09	65.78
B(nT)	3.91	4.52	5.11	5.58	5.19
$\tau_{\text{s}}\left(AU\right)$	80.0	82.0	84.0	86.0	88.0
λ_{\parallel} (AU)	1.185	1.090	0.948	0.798	0.565
K _{A0}	0.90	0.80	0.40	0.0	0.0
P_{A0} (GV)	0.90	0.90	0.90	0.90	0.90
$K_{\perp r}^{0}$	0.02	0.02	0.02	0.02	0.02
$K_{\perp\theta}^{0}$	0.02	0.02	0.02	0.02	0.02
c_1	0.70	0.77	0.89	0.96	1.09
$c_{2\parallel}$	1.52	1.52	1.52	1.52	1.52
$c_{2\perp}$	1.14	1.14	1.14	1.14	1.14
<i>c</i> ₃	2.50	2.50	2.50	2.50	2.50
P_k (GV)	4.00	4.00	4.00	4.00	4.00
$d_{\perp \theta}$	6.00	6.00	6.00	6.00	6.00

Corresponding Mean Free Paths and Drift Scale

Transport equation for the modulation of cosmic rays in the heliosphere

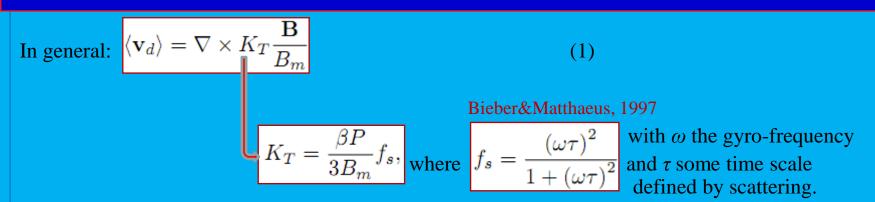
Parker's (1965) Transport Equation (TPE):

$$\frac{\partial f}{\partial t} = \nabla \cdot \left[\mathbf{K} \cdot \nabla f \right] - V \cdot \nabla f - \left\langle \mathbf{v}_{D} \right\rangle \cdot \nabla f + \frac{1}{3} (\nabla \cdot V) \frac{\partial f}{\partial \ln p} + Q(r, p, t)$$
Diffusion Convection


Particle drifts Adiabatic energy changes

 $f(\mathbf{r}, p, t)$ is the cosmic ray distribution function.

K is the diffusion tensor:


$$\mathbf{K} = \begin{bmatrix} K_{rr} & K_{r\theta} & K_{r\phi} \\ K_{\theta r} & K_{\theta \theta} & K_{\theta \phi} \\ K_{\phi r} & K_{\phi \theta} & K_{\phi \phi} \end{bmatrix}$$

 $V(r, \theta) = V(r, \theta)\mathbf{e}_r$ is the solar wind velocity vector

V_D is the averaged gradient and curvature drift velocity

The drift coefficient

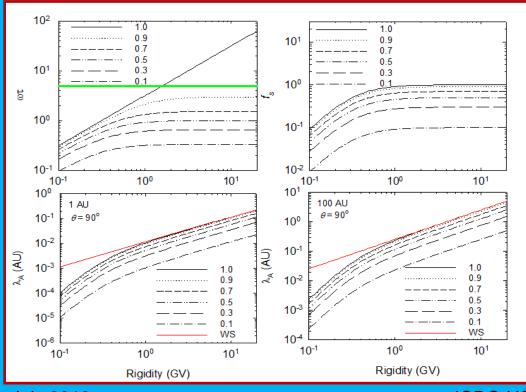
Re-writing Equation (1):

$$\langle \mathbf{v}_d \rangle = \frac{\beta P}{3} \left[f_s \nabla \times \frac{\mathbf{B}}{B_m^2} + \nabla f_s \times \frac{\mathbf{B}}{B_m^2} \right]$$
 (2)

WS drifts modification can be accomplished through assuming:

CASE 1: $\omega \tau$ = constant (similar to Potgieter et al., 1989).

CASE 2: $\omega \tau \sim \text{constant} \times P$ (see Burger et al., 2000).


CASE 3: ωτ has spatial dependence (see Bieber & Matthaeus, 1997; Burger & Visser, 2010; Engelbrecht & Burger, 2015; Ngobeni & Potgieter, 2015).

CASE 2: The rigidity dependence

e.g. Ferreira, 2002; Potgieter & Vos, 2017 and etc

$$K_{T} = k_{A} \frac{\beta P}{3B_{m}} \frac{\left(P/P_{0}^{'}\right)^{2}}{1 + \left(P/P_{0}^{'}\right)^{2}} \longrightarrow f_{s} = k_{A} \frac{\left(P/P_{0}^{'}\right)^{2}}{1 + \left(P/P_{0}^{'}\right)^{2}} \text{ then } \omega \tau = \sqrt{k_{A} \frac{\left(P/P_{0}^{'}\right)^{2}}{1 + \left(1 - k_{A}\right) \left(P/P_{0}^{'}\right)^{2}}}$$

for $k_A = 1.0$, $\omega \tau$ reduces to P/P_0' (assumption made by Burger et al. 2000)

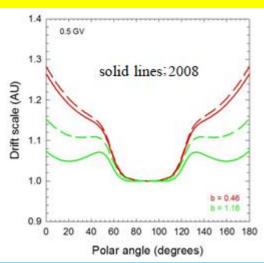
Three important points

- When $k_{A0} < 1.0$ drifts are also reduced at P > 1.0 GV.
- For any value $\omega \tau > 5$, f_s remains ~ 1.0 (indicating no substantial drift reduction).
- WS drift scale $(\lambda_A = 3K_T/v)$ is reduced by factor k_{A0} at P > 1.0 GV.

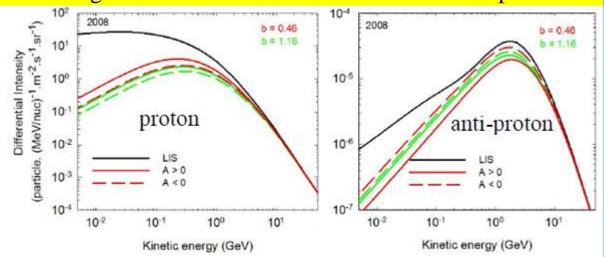
July 2019 ICRC-USA 7

Extracting the spatial dependence of f_s

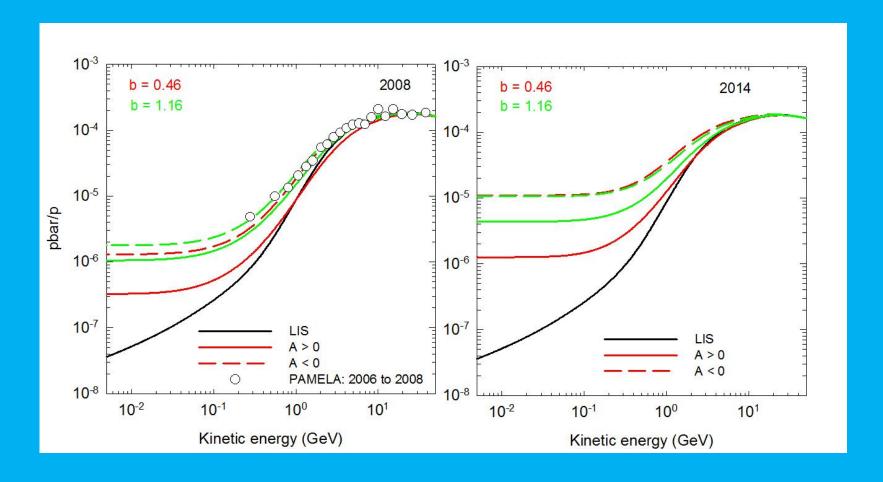
The analytical expression of the drift coefficient from Tautz and Shalchi is given as:


$$K_T = \frac{\beta P}{3B_m} \frac{1}{1+a \left[\frac{\delta B}{B_m}\right]^{2b}}$$

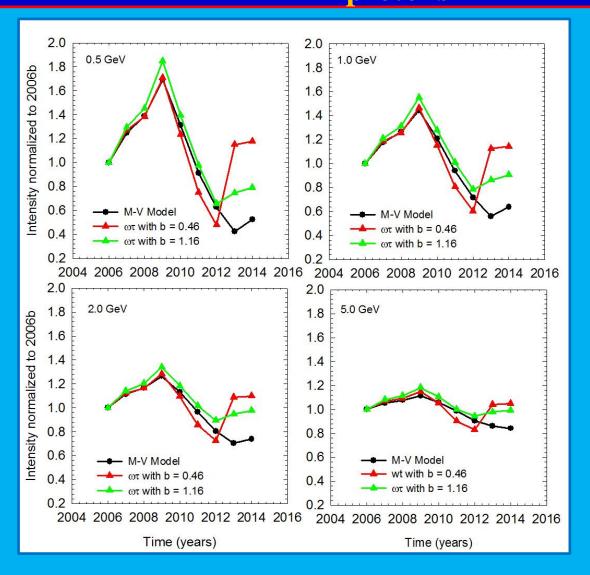
$$= \frac{\beta P}{3B_m} f_s$$


Best fit was achieved with

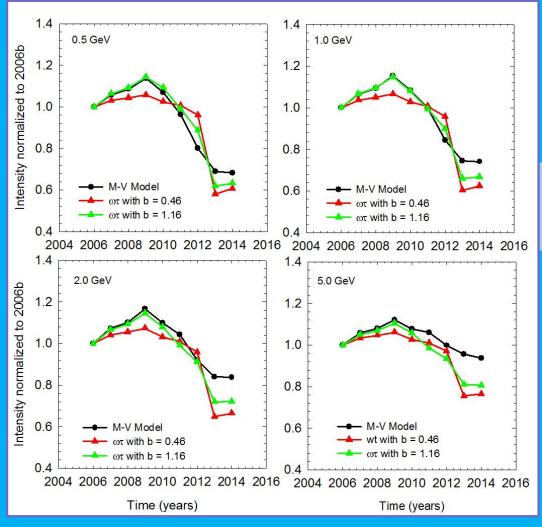
 $a = 1.09 \pm 0.52$ and $b = 0.81 \pm 0.35$


Normalized drift scale

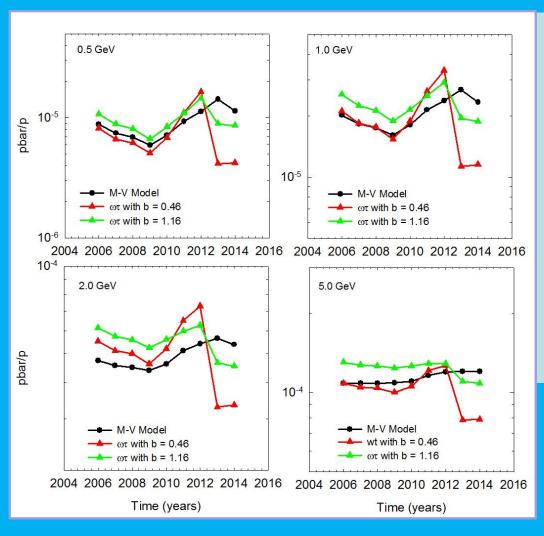
Modeling results at the Earth: A > 0 and A < 0 comparison



Energy dependence of anti-protons/protons ratios


Effects of spatial dependence of $\omega \tau$ are more prominent in the A > 0 cycle

Comparison between M-V Model and spatial dependence of ωτ: protons


ωτ with b = 0.46 describes the M-V Model well from 2006 to 2010. While b = 1.16 gives better estimation of MV-Model between 2010 and 2012

Comparison between M-V Model and spatial dependence of ωτ: anti-protons

ωτ with b = 1.16 describes the M-V Model well from 2006 to 2012 below 5.0 GeV.

Modelling anti-proton to proton intensity ratios over time

- ✓ The proton intensity increased relatively more than anti-proton intensity until 2009 (corresponding to decreasing tilt angle).
- ✓ After 2009 (until 2012) proton intensity decreased relatively more (corresponding to increasing tilt angle).
- ✓ The large decreases in the ratio after 2012 is due to inadequate particle drift reduction and deviate largely with M-V Model.

Summary and Conclusions

- Using the self-consistent measurement validated 3D numerical model of Potgieter & Vos (2017) that includes particle drifts, the modulation of both protons and anti-protons was studied from 2006 to 2014 using.
- ✓ PAMELA proton observations together with numerical modeling confirmed that drifts played a significant role in modulation of GCRs from 2006 until around 2012.
- \checkmark The intensity-time profile of protons from 2006 to 2012 can be qualitatively described with the assumed spatial dependence of ωτ, on the drift coefficient, by adjusting values of a and b.
- ✓ Both assumptions made about ωτ are inadequate, and thus unsuitable, to describe pbar/p ratios between 2012 and 2014, as required by the MV-Model.