The spectrum of the light component of TeV cosmic rays measured with HAWC

J.C. Arteaga-Velázquez* and J. D. Álvarez for the HAWC Collaboration
Universidad Michoacana, Morelia, Mexico

Content

1. The HAWC Y-ray observatory
2. EAS age and energy estimations
3. MC simulations
4. Data selection
5. Analysis
6. H + He energy spectrum
7. Summary

ICRC2019

-

Y- and cosmic-ray detector:

- Air-shower observatory
- Ground-based Cherenkov array
$\mathrm{E}=100$ GeV - 100 TeV
Location:
- Volcano Sierra Negro, Puebla,
Mexico
- $19^{\circ} \mathrm{N}$ and $97^{\circ} \mathrm{W}$
- 4100 m a.s.I. (640 g/cm²) Y- and cosmic-ray detector:
- Air-shower observatory
- Ground-based Cherenkov array
$\mathrm{E}=100$ GeV - 100 TeV
Location:
- Volcano Sierra Negro, Puebla,
Mexico
- $19^{\circ} \mathrm{N}$ and $97^{\circ} \mathrm{W}$
- 4100 m a.s.I. (640 g/cm²) Y- and cosmic-ray detector:
- Air-shower observatory
- Ground-based Cherenkov array
$\mathrm{E}=100$ GeV - 100 TeV
Location:
- Volcano Sierra Negro, Puebla,
Mexico
- $19^{\circ} \mathrm{N}$ and $97^{\circ} \mathrm{W}$
- 4100 m a.s.I. (640 g/cm²) Y- and cosmic-ray detector:
- Air-shower observatory
- Ground-based Cherenkov array
$\mathrm{E}=100$ GeV - 100 TeV
Location:
- Volcano Sierra Negro, Puebla,
Mexico
- $19^{\circ} \mathrm{N}$ and $97^{\circ} \mathrm{W}$
- 4100 m a.s.I. (640 g/cm²) Y- and cosmic-ray detector:
- Air-shower observatory
- Ground-based Cherenkov array
$\mathrm{E}=100$ GeV - 100 TeV
Location:
- Volcano Sierra Negro, Puebla,
Mexico
- $19^{\circ} \mathrm{N}$ and $97^{\circ} \mathrm{W}$
- 4100 m a.s.I. (640 g/cm²) Y- and cosmic-ray detector:
- Air-shower observatory
- Ground-based Cherenkov array
$\mathrm{E}=100$ GeV - 100 TeV
Location:
- Volcano Sierra Negro, Puebla,
Mexico
- $19^{\circ} \mathrm{N}$ and $97^{\circ} \mathrm{W}$
- 4100 m a.s.I. (640 g/cm²) Y- and cosmic-ray detector:
- Air-shower observatory
- Ground-based Cherenkov array
$\mathrm{E}=100$ GeV - 100 TeV
Location:
- Volcano Sierra Negro, Puebla,
Mexico
- $19^{\circ} \mathrm{N}$ and $97^{\circ} \mathrm{W}$
- 4100 m a.s.I. (640 g/cm²) Y- and cosmic-ray detector:
- Air-shower observatory
- Ground-based Cherenkov array
$\mathrm{E}=100$ GeV - 100 TeV
Location:
- Volcano Sierra Negro, Puebla,
Mexico
- $19^{\circ} \mathrm{N}$ and $97^{\circ} \mathrm{W}$
- 4100 m a.s.I. (640 g/cm²) Y- and cosmic-ray detector:
- Air-shower observatory
- Ground-based Cherenkov array
$\mathrm{E}=100$ GeV - 100 TeV
Location:
- Volcano Sierra Negro, Puebla,
Mexico
- $19^{\circ} \mathrm{N}$ and $97^{\circ} \mathrm{W}$
- 4100 m a.s.I. (640 g/cm²) Y- and cosmic-ray detector:
- Air-shower observatory
- Ground-based Cherenkov array
$\mathrm{E}=100$ GeV - 100 TeV
Location:
- Volcano Sierra Negro, Puebla,
Mexico
- $19^{\circ} \mathrm{N}$ and $97^{\circ} \mathrm{W}$
- 4100 m a.s.I. (640 g/cm²) Y- and cosmic-ray detector:
- Air-shower observatory
- Ground-based Cherenkov array
$\mathrm{E}=100$ GeV - 100 TeV
Location:
- Volcano Sierra Negro, Puebla,
Mexico
- $19^{\circ} \mathrm{N}$ and $97^{\circ} \mathrm{W}$
- 4100 m a.s.I. (640 g/cm²)

1) The HAWC γ-ray observatory

array Y- and cosmic-ray detector:

- Air-shower observatory
- Ground-based Cherenkov array
$\mathrm{E}=100$ GeV - 100 TeV
Location:
- Volcano Sierra Negro, Puebla,
Mexico
- $19^{\circ} \mathrm{N}$ and $97^{\circ} \mathrm{W}$
- 4100 m a.s.I. (640 g/cm²)

al da

$$
\square+\mathrm{T}^{2}=\mathrm{H}
$$

$$
\begin{aligned}
& 300 \text { densely packed water Cherenkov } \\
& \text { detectors (200,000 l of water + } 4 \text { PMTs) }
\end{aligned}
$$

-

-2

.

1) The HAWC γ-ray observatory

- From hit times at PMTs, deposited charged, number of PMT's with signal:
- Core location, $\left(X_{c}, Y_{c}\right)$
- Arrival direction, θ
- Fraction of hit PMT's, $\mathrm{f}_{\text {hit }}$
- Lateral charge profile, Qeff(r)
- ...

2) EAS age and energy estimations

- EAS primary energy:

- Produce LDF tables of MC protons:

Binning in r, Ref, θ and E

- Maximum likelihood to find table that
best fits the Qeff(r) distribution of the
- Maximum likelihood to find table that
best fits the Qeff(r) distribution of the event, from which E is obtained.者 \square

[^0]

- Lateral age parameter (s):
- Obtained event-by-event
- Fit of Qeff(r) with NKG-like function:

$$
f_{c h}(r)=A \cdot\left(r / r_{0}\right)^{s-3} \cdot\left(1+r / r_{0}\right)^{s-4.5}
$$

with $r_{0}=124.21 \mathrm{~m}$.
A, s are free parameters
[Kelly Malone, APS 2017]

J.A. Morales Soto et al., Poster PS1-199, PoS(ICRC2019)359

,

loll

- But also use different composition models for studies of systematics

3) MC simulations

Buta
.

But also use diferent composition models for studies of systematics
\square

$$
\square
$$

Composition models

[^1]
4）Data selection

Selection cuts

－Important to reduce systematic effects on results：
－$\theta<16.7^{\circ}$
－Successful core and arrival direction reconstruction
－Activate at least 60 PITs within 40 m from core
－On－array EAS cores
－Multiplicity threshold $\mathrm{N}_{\text {hit }} \geq 75$ PMTs
－Fraction hit（\＃of hit PMT＇s／\＃available channels）≥ 0.3
－ $\log _{10}(E / G e V)<5.5$
－Bias：

$\mathbf{E} \geq \mathbf{1 0 ~ T e V : ~}$	
Δ core $_{\text {res }}$	$\leq 9 \mathrm{~m}$
$\Delta \log _{10}(\mathrm{E} / \mathrm{GeV})$	≤ 0.12
$\Delta \mathrm{a}$	$\leq 0.3^{\circ}$

$\geq 10 \mathrm{TeV}$

results：

路 \square

号

5）Analysis

路

 $-$．

．

5) Analysis

Obtain response matrix and effective area from MC simulations

$$
\boldsymbol{A}_{\text {eff }}\left(\mathbf{E}^{\mathbf{T}} \mathbf{i}\right)=\mathrm{f}_{\mathrm{corr}}\left(\mathrm{E}_{\mathrm{i}}^{\boldsymbol{T}_{\mathbf{i}}}\right) \cdot \boldsymbol{A}_{\text {eff }}{ }^{\mathbf{H}+\mathbf{H e}}\left(\mathbf{E}_{\mathbf{i}}^{\mathbf{T}}\right)
$$

- Correction factor due to contamination of heavy events:

$$
\begin{aligned}
& \text { - Effective area of } \mathrm{H}+\mathrm{He} \text { in sub-sample: } \\
& A_{\text {eff }} \mathrm{H}+\mathrm{He}\left(\mathrm{E}_{\mathrm{i}}\right)=A_{\text {thrown }} \frac{\cos \theta_{\max }+\cos \theta_{\min }}{2} \boldsymbol{\varepsilon}^{\mathrm{H}+\mathrm{He}\left(E^{\top}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text {, } \\
& \text { f } \\
& \text { [0.00, 16.70] }
\end{aligned}
$$

.
.
.


```
    *
```

```
    *
```

```
    *
```

```
    *
```

```
    *
```

```
    *
```


()

\author{

-

 \section*{

 }
 11

}

Unfolded HAWC spectrum

 \square

 正

．

Abstract

．

\qquad

Fit of spectrum

6) $\mathrm{H}+\mathrm{He}$ energy spectrum

.

 1. Use following functions:
\rightarrow Single power law:

$$
d \Phi(E) / d E=\Phi_{0} E^{\gamma 1}
$$

\rightarrow Double power law:

$$
d \Phi(E) / d E=\Phi_{0} E^{\gamma 11}\left[1+\left(E / E_{0}\right)^{\varepsilon}\right]^{(\gamma 2-\gamma 1) / \varepsilon}
$$

2. Minimize x^{2} with MINUIT and take into account correlation between points:

$$
\chi^{2}=\sum_{i, j}\left[\Phi_{i}^{\left.\text {data }-\Phi^{\text {fit }}\left(E_{i}\right)\right]\left[V_{\text {stat }}^{\text {Tot }}\right]_{i j}\left[\Phi_{j}^{\text {data }}-\Phi^{\text {fit }}\left(E_{j}\right)\right]} \begin{array}{l}\text { PDG (2017) }\end{array}\right.
$$

-

> PDG (2017)

\qquad

號

號

Abstract

> .

 following functions:
Single power law:

$$
\mathrm{d} \Phi(\mathrm{E}) / \mathrm{dE}=\Phi_{0} \mathrm{E}^{\mathrm{Y1}}
$$

Double power law:

$$
\mathrm{d} \Phi(\mathrm{E}) / \mathrm{dE}=\Phi_{0} \mathrm{E}^{\mathrm{y1}[}\left[1+\left(\mathrm{E} / \mathrm{E}_{0}\right)^{\varepsilon}\right]^{\left(12-\gamma \gamma_{1}\right) \varepsilon}
$$

mize x^{2} with MINUIT and take into account correlation between points:

$$
\chi^{2}=\sum_{\mathrm{i}, \mathrm{H}}\left[\Phi_{\mathrm{i}}^{\text {data }}-\Phi^{\text {fit }}\left(\mathrm{E}_{\mathrm{i}}\right)\right]\left[\mathrm{V}_{\text {stat }}^{\text {Tot }^{-1}}{ }_{\mathrm{ij}}\left[\Phi_{\mathrm{j}}^{\text {data }}-\Phi^{\text {fit }}\left(E_{j}\right)\right]\right.
$$ following functions:

Single power law:

$$
\mathrm{d} \Phi(\mathrm{E}) / \mathrm{dE}=\Phi_{0} \mathrm{E}^{\mathrm{Y1}}
$$

Double power law:

$$
\mathrm{d} \Phi(\mathrm{E}) / \mathrm{dE}=\Phi_{0} \mathrm{E}^{\mathrm{y1}[}\left[1+\left(\mathrm{E} / \mathrm{E}_{0}\right)^{\varepsilon}\right]^{\left(12-\gamma \gamma_{1}\right) \varepsilon}
$$

mize x^{2} with MINUIT and take into account correlation between points:

$$
\chi^{2}=\sum_{\mathrm{i}, \mathrm{H}}\left[\Phi_{\mathrm{i}}^{\text {data }}-\Phi^{\text {fit }}\left(\mathrm{E}_{\mathrm{i}}\right)\right]\left[\mathrm{V}_{\text {stat }}^{\text {Tot }^{-1}}{ }_{\mathrm{ij}}\left[\Phi_{\mathrm{j}}^{\text {data }}-\Phi^{\text {fit }}\left(E_{j}\right)\right]\right.
$$

\qquad

$$
\begin{aligned}
& \text { following functions: } \\
& \text { Single power law: } \\
& \left.\qquad \begin{array}{l}
d \Phi(E) / d E=\Phi_{0} E^{\gamma 1} \\
\text { Double power law: } \\
\qquad d \Phi(E) / d E=\Phi_{0} E^{\gamma 1}\left[1+\left(E / E_{0}\right)^{\varepsilon}\right]^{(\gamma 2-\gamma 1) / \varepsilon} \\
\text { mize } X^{2} \text { with MINUIT and take into account correlation between poir } \\
\qquad \chi^{2}=\sum_{i, j}\left[\Phi_{i}^{\text {data }}-\Phi^{\text {fit }}\left(E_{i}\right)\right]\left[V_{\text {stat }}^{\text {Tot }}\right]^{-1}\left[\Phi_{j}^{\text {data }}-\Phi^{\text {fit }}\left(E_{j}\right)\right]
\end{array}\right]
\end{aligned}
$$

1. Use following functions:
\rightarrow Single power law:

$$
d \Phi(E) / d E=\Phi_{0} E^{\gamma 11}
$$

\rightarrow Double power law:

$$
d \Phi(E) / d E=\Phi_{0} E^{v 11}\left[1+\left(E / E_{0}\right)^{\varepsilon}\right]^{\left(\gamma_{2}-\gamma_{1}\right) / \varepsilon}
$$

2. Minimize x^{2} with MINUIT and take into account correlation between

$$
\chi^{2}=\sum_{i, j}\left[\Phi_{i}^{\text {data }}-\Phi^{\text {fit }}\left(E_{i}\right)\right]\left[V_{\text {stat }}^{\text {Tot }}\right]_{i j}^{-1}\left[\Phi_{j}^{\text {data }}-\Phi^{\text {fit }}\left(E_{j}\right)\right]
$$

$P D G(2017)$

Abstract

 (
\square ,


```
*
```

 3
 ,
 \square

```
\square
```

 \(\operatorname{lic}_{2}\)
 ?

\square
\square

Fit of spectrum

6） $\mathrm{H}+\mathrm{He}$ energy spectrum

號

\qquad
\qquad

Cosmic ray spectrum of $\mathrm{H}+\mathrm{He}$ mass group is not described by a single power-law.

Abstract

The lateral age parameter is sensitive to the composition of cosmic rays at HAWC. A first analysis of cosmic ray composition with HAWC has allowed to reconstruct the spectrum of the light component $(\mathrm{H}+\mathrm{He})$ of cosmic rays in the range $\mathrm{E}=[10 \mathrm{TeV}, 200 \mathrm{TeV}]$. The light spectrum of cosmic rays is in agreement with data from NUCLEON and EAS-TOP, but above The lateral age parameter is sensitive to the composition of cosmic rays at HAWC. A first analysis of cosmic ray composition with HAWC has allowed to reconstruct the spectrum of the light component $(\mathrm{H}+\mathrm{He})$ of cosmic rays in the range $\mathrm{E}=[10 \mathrm{TeV}, 200 \mathrm{TeV}]$. The light spectrum of cosmic rays is in agreement with data from NUCLEON and EAS-TOP, but above The lateral age parameter is sensitive to the composition of cosmic rays at HAWC. A first analysis of cosmic ray composition with HAWC has allowed to reconstruct the spectrum of the light component $(\mathrm{H}+\mathrm{He})$ of cosmic rays in the range $\mathrm{E}=[10 \mathrm{TeV}, 200 \mathrm{TeV}]$. The light spectrum of cosmic rays is in agreement with data from NUCLEON and EAS-TOP, but above - The light spectrum of cosmic rays is in agreement with data from NUCLEON and EAS-TOP, but above The light spectrum of cosmic rays is in agreement with data fro estimations from ATIC-2, CREAM-II/-III, JACEE and ARGO-YBJ.

(

.

.

Thank you

Backup slides

Check performance of method with MC simulations: Reconstruct model with lower light/heavy ratio

When the abundance of the heavy component is above that of the nominal model used to reconstruct the data, then the light component of CR's is overestimated, but the shape of the spectrum is preserved.

Check performance of method with MC simulations: presence of a kink

Reconstruct nominal model but with a kink in the light component of CR's at
$\log _{10}\left(\mathrm{E}_{0} / \mathrm{GeV}\right) \sim 4.5$

The kink is reconstructed

The reconstructed $\Delta \boldsymbol{Y}$ is smaller than the actual one due to contamination from the heavy component.

[^0]: [HAWC Collab., PRD 96 (2017); Z. Hampel-Arias' PhD thesis, 2017]

[^1]: I

