

Penetration of cosmic rays into dense molecular clouds

Alexei Ivlev

Max-Planck-Institut für extraterrestrische Physik, Garching, Germany

in collaboration with V. Dogiel, D. Chernyshov, D. Malyshev, A. Strong, P. Caselli

Star-forming regions

Processes driven by *low-energy* CRs in clouds and disks

Ionization in UV- and X-ray-shielded regions:

```
coupling of gas to magnetic field
```

- ⇒ magnetic braking, onset of rotational instabilities, ... gas heating
 - ⇒ cloud dynamics, chemistry, ...

desorption of ice

- ⇒ gas density, abundances of complex molecules, ...
- dust charging
 - ⇒ dust coagulation, chemical processes on grains, ...
- Formation of polyatomic molecules:

$$p_{CR} + H_2 \rightarrow H_2^+ \implies H_2^+ + H_2 \rightarrow H_3^+ \implies H_3^+ + [O, CO, N] \rightarrow [OH^+, HCO^+, N_2H^+] \implies \dots$$

•

Transport of CRs in clouds

CR protons up to $\sim 10^{15}$ eV are well magnetized at the scale of a problem, so their propagation is along the local magnetic field (coordinate S).

The CR distribution function $f(E, s, \mu)$ is governed by the transport equation:

$$\frac{\partial S}{\partial s} + \frac{\partial}{\partial E} \left(\dot{E} f \right) + \nu_{\text{cat}} f = 0$$

Weak scattering: $S pprox \mu v f$ (e.g., Coulomb collisions)

Strong scattering: $S \approx -D \frac{\partial f}{\partial s} + uf$ (e.g., MHD turbulence)

The solution critically depends on the scattering regime (Silsbee & Ivlev 2019)

Streaming instability

(Kulsrud & Pearce 1969; Skilling & Strong 1976)

B

CR stream enters quiescent plasma

Isotropic CRs diffuse and drift with the excited MHD waves

- Streaming CRs resonantly excite MHD waves (when $u >> v_A$).
- The wave excitation rate $\gamma_{\rm CR} \propto p v(S v_{\rm A} f)$.

Model setup: geometry

Dense cores + filaments + etc.

Diffuse envelope

Interstellar medium

- We identify 3 characteristic regions, and focus on processes in the diffuse envelope.
- Absorption of CRs in the core generates their inward flux.

Universal flux of self-modulated CRs

(Ivlev et al. 2018; Dogiel et al. 2018)

- The excitation rate of MHD waves is $\gamma_{\rm CR} \propto p v(S v_{\rm A} f)$.
- In a free streaming, assume $S(E) \sim j_{\rm IS}(E) = v f_{\rm IS}$. Then the balance of excitation and damping yields the threshold energy $E_{\rm ex}$:

$$pvj_{\rm IS}|_{E_{\rm ex}} = const$$

below which the turbulence is excited.

• For $E < E_{\rm ex}$, we obtain a universal flux:

$$S(E) \approx const / (pv) \equiv S_{\rm u}(E)$$

which does not depend on $f_{\rm IS}$ as long as $S/f_{\rm IS} >> v_{\rm A}$.

S(E) curve for different $\mathcal{N}_{\mathrm{H2}}$

 $S_{\rm u} = const/(pv)$

Decreasing $\mathcal{N}_{\rm H2}$ leads to lower $E_{\rm ex}$, but the modulated flux at $E < E_{\rm ex}$ remains unchanged.

Modulation of CR protons in CMZ

5 × standard IS spectrum; $\mathcal{N}_{\rm H2} = 10^{23} \, \rm cm^{-2}$; $n_{\rm H2}$ (envelope) = 10 cm⁻³

Gamma-ray flux from CMZ

Gamma-ray flux from local clouds

Conclusions

- Self-excited turbulence is crucial for penetration of (sub)GeV CRs into dense molecular clouds, leading to a strong flux modulation.
- The modulation occurs below the threshold energy $E_{\rm ex}$, which increases with $\mathcal{N}_{\rm H2}$.
- For CMZ parameters we get $E_{\rm ex}{\sim}10$ GeV. This should lead to a depletion of gamma-ray emission (below $E_{\gamma}{\sim}2$ GeV), a drastic reduction of ionization (by up to a factor of ${\sim}10$), etc.
- The effect of CR self-modulation is missing in the standard models of CR propagation in the Galaxy (GALPROP, DRAGON, ...).